版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省唐山市龍華中學2024屆中考聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°2.如圖是幾何體的俯視圖,所表示數(shù)字為該位置小正方體的個數(shù),則該幾何體的正視圖是()A. B. C. D.3.下列事件中,必然事件是()A.若ab=0,則a=0B.若|a|=4,則a=±4C.一個多邊形的內角和為1000°D.若兩直線被第三條直線所截,則同位角相等4.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.5.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.106.如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為().A.60° B.75° C.85° D.90°7.在平面直角坐標系中,點P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球然后放回,再隨機地摸出一個小球.則兩次摸出的小球的標號的和等于6的概率為()A. B. C. D.9.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:110.對于下列調查:①對從某國進口的香蕉進行檢驗檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調查的是()A.①②B.①③C.②③D.①②③二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在2×4的正方形網格中,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點,△ABC的頂點都在格點上,將△ABC繞著點C按順時針方向旋轉一定角度后,得到△A'B'C',點A'、B'在格點上,則點A走過的路徑長為_____(結果保留π)12.計算:______.13.如果m,n互為相反數(shù),那么|m+n﹣2016|=___________.14.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.15.因式分解:2x16.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.三、解答題(共8題,共72分)17.(8分)已知:a+b=4(1)求代數(shù)式(a+1)(b+1)﹣ab值;(2)若代數(shù)式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.18.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;經過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.19.(8分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大?。蝗鐖D②,若點F為的中點,的半徑為2,求AB的長.20.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.21.(8分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間的函數(shù)圖象如下圖所示.(1)求甲組加工零件的數(shù)量y與時間x之間的函數(shù)關系式.(2)求乙組加工零件總量a的值.22.(10分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.23.(12分)如圖,在矩形ABCD中,E是邊BC上的點,AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.24.“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產空調,已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元,求A、B兩種型號的空調的購買價各是多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質,即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.2、B【解析】
根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面看得到的圖形即可.【詳解】解:主視圖,如圖所示:.故選B.【點睛】本題考查由三視圖判斷幾何體;簡單組合體的三視圖.用到的知識點為:主視圖是從物體的正面看得到的圖形;看到的正方體的個數(shù)為該方向最多的正方體的個數(shù).3、B【解析】
直接利用絕對值的性質以及多邊形的性質和平行線的性質分別分析得出答案.【詳解】解:A、若ab=0,則a=0,是隨機事件,故此選項錯誤;B、若|a|=4,則a=±4,是必然事件,故此選項正確;C、一個多邊形的內角和為1000°,是不可能事件,故此選項錯誤;D、若兩直線被第三條直線所截,則同位角相等,是隨機事件,故此選項錯誤;故選:B.【點睛】此題主要考查了事件的判別,正確把握各命題的正確性是解題關鍵.4、A【解析】
根據(jù)等邊三角形的性質得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內角和得到∠AFG=90°,根據(jù)相似三角形的性質得到==,==,根據(jù)三角形的面積公式即可得到結論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點睛】本題考查了等邊三角形的性質,相似三角形的判定和性質,三角形的面積的計算,熟練掌握相似三角形的性質和判定是解題的關鍵.5、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.6、C【解析】試題分析:根據(jù)旋轉的性質知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數(shù)為85°.故選C.考點:旋轉的性質.7、A【解析】
分點P的橫坐標是正數(shù)和負數(shù)兩種情況討論求解.【詳解】①m-3>0,即m>3時,2-m<0,所以,點P(m-3,2-m)在第四象限;②m-3<0,即m<3時,2-m有可能大于0,也有可能小于0,點P(m-3,2-m)可以在第二或三象限,綜上所述,點P不可能在第一象限.故選A.【點睛】本題考查了各象限內點的坐標的符號特征,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、C【解析】列舉出所有情況,看兩次摸出的小球的標號的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.9、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考常考題型.10、B【解析】
根據(jù)普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似解答.【詳解】①對從某國進口的香蕉進行檢驗檢疫適合抽樣調查;②審查某教科書稿適合全面調查;③中央電視臺“雞年春晚”收視率適合抽樣調查.故選B.【點睛】本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:連接AA′,根據(jù)勾股定理求出AC=AC′,及AA′的長,然后根據(jù)勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據(jù)弧長公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點A走過的路徑長=×2πAC=π.故答案為:π.點睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運用,弧長公式,解題時注意:在旋轉變換下,對應線段相等.解決問題的關鍵是找出變換的規(guī)律,根據(jù)弧長公式求解.12、【解析】原式==.故答案為:.13、1.【解析】試題分析:先用相反數(shù)的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數(shù),∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數(shù)的性質.14、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.15、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點:因式分解.16、6.【解析】分析:設扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點睛:此題考查弧長公式,關鍵是根據(jù)弧長公式解答.三、解答題(共8題,共72分)17、(1)5;(2)1或﹣1.【解析】
(1)將原式展開、合并同類項化簡得a+b+1,再代入計算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,據(jù)此進一步計算可得.【詳解】(1)原式=ab+a+b+1﹣ab=a+b+1,當a+b=4時,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,則a﹣b=1或﹣1.【點睛】本題主要考查代數(shù)式的求值,解題的關鍵是掌握多項式乘多項式的運算法則及整體思想的運用.18、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調運方案總運費最??;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小,其調運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據(jù)題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.19、(1)∠B=40°;(2)AB=6.【解析】
(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD
,即可求得∠CAD=∠ADO
,繼而求得答案;
(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD
,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點睛】本題考查了切線的性質,平行線的性質,等腰三角形的性質,弧弦圓心角的關系,等邊三角形的判定與性質,含30°角的直角三角形的性質.熟練掌握切線的性質是解(1)的關鍵,證明△AOF為等邊三角形是解(2)的關鍵.20、(1)3+【解析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質、直角三角形斜邊中線定理,等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.21、(1)y=60x;(2)300【解析】
(1)由題圖可知,甲組的y是x的正比例函數(shù).設甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為y=kx.根據(jù)題意,得6k=360,解得k=60.所以,甲組加工的零件數(shù)量y與時間x之間的關系式為y=60x.(2)當x=2時,y=100.因為更換設備后,乙組工作效率是原來的2倍.所以,解得a=300.22、(1)60°;(2)證明略;(3)【解析】
(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據(jù)AB是⊙O的直徑,利用直徑所對的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場施工防化學災害制度
- 應急物資裝備應急預案
- 醫(yī)療護理醫(yī)學培訓 吸痰護理技術課件
- DB6103T 87-2025企業(yè)簡易注銷登記服務規(guī)程
- XX村電排建設及維護合同書2025
- 個人股權抵押融資合同樣本
- 臨時促銷服務合同
- 中小企業(yè)融資合作合同協(xié)議
- 京東商城代運營合同模板
- 個人質押貸款合同模板
- 某縣城區(qū)地下綜合管廊建設工程項目可行性實施報告
- 《架空輸電線路導線舞動風偏故障告警系統(tǒng)技術導則》
- 2024年計算機二級WPS考試題庫
- 廣東省廣州黃埔區(qū)2023-2024學年八年級上學期期末數(shù)學試卷(含答案)
- 法理學課件馬工程
- 《無菌檢查培訓》課件
- 2024-2030年中國香菇行業(yè)銷售狀況及供需前景預測報告
- 高中英語必背3500單詞表(完整版)
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 禁止送禮的協(xié)議書
- 2024年版《輸變電工程標準工藝應用圖冊》
評論
0/150
提交評論