高二數(shù)學(xué)選修課件第部分第一章§分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第1頁(yè)
高二數(shù)學(xué)選修課件第部分第一章§分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第2頁(yè)
高二數(shù)學(xué)選修課件第部分第一章§分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第3頁(yè)
高二數(shù)學(xué)選修課件第部分第一章§分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第4頁(yè)
高二數(shù)學(xué)選修課件第部分第一章§分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高二數(shù)學(xué)選修課件第部分第一章§分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理匯報(bào)人:XX20XX-01-14CATALOGUE目錄計(jì)數(shù)原理基本概念分類加法計(jì)數(shù)原理應(yīng)用分步乘法計(jì)數(shù)原理應(yīng)用計(jì)數(shù)原理綜合應(yīng)用典型例題解析與討論01計(jì)數(shù)原理基本概念定義完成一件事有$n$類辦法,在第$1$類辦法中有$m_1$種不同的方法,在第$2$類辦法中有$m_2$種不同的方法,$ldots$,在第$n$類辦法中有$m_n$種不同的方法。那么完成這件事共有$N=m_1+m_2+...+m_n$種不同的方法。舉例從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘飛機(jī)。一天中火車有$3$班,汽車有$2$班,飛機(jī)有$1$班。那么一天中從甲地到乙地共有多少種不同的走法?分類加法計(jì)數(shù)原理完成一件事,需要分成$n$個(gè)步驟,做第$1$步有$m_1$種不同的方法,做第$2$步有$m_2$種不同的方法,$ldots$,做第$n$步有$m_n$種不同的方法。那么完成這件事共有$N=m_1timesm_2times...timesm_n$種不同的方法。定義在所有的三位數(shù)中,各位數(shù)字之和等于$9$的三位數(shù)共有多少個(gè)?舉例分步乘法計(jì)數(shù)原理分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理都是用于解決計(jì)數(shù)問(wèn)題的基本原理。在實(shí)際問(wèn)題中,往往需要同時(shí)使用這兩個(gè)原理。關(guān)系分類加法計(jì)數(shù)原理是“分類”的,即完成一件事的方法可以分成幾類,每類中的方法都是獨(dú)立的,各類中的方法數(shù)相加即可得到總的方法數(shù);而分步乘法計(jì)數(shù)原理是“分步”的,即完成一件事需要分成幾個(gè)步驟,每個(gè)步驟都有多種方法可以選擇,各個(gè)步驟中的方法數(shù)相乘即可得到總的方法數(shù)。區(qū)別兩者關(guān)系與區(qū)別02分類加法計(jì)數(shù)原理應(yīng)用

排列組合問(wèn)題排列問(wèn)題從n個(gè)不同元素中取出m個(gè)元素(m≤n)按照一定的順序排成一列,叫做從n個(gè)元素中取出m個(gè)元素的一個(gè)排列。組合問(wèn)題從n個(gè)不同元素中取出m個(gè)元素(m≤n)的所有排列的個(gè)數(shù),叫做從n個(gè)元素中取出m個(gè)元素的組合數(shù)。排列與組合的區(qū)別排列是把元素按順序排列,而組合是把元素?zé)o順序地組合起來(lái)。古典概型01如果每個(gè)事件發(fā)生的概率是相等的,則稱之為古典概型。在古典概型中,可以使用分類加法計(jì)數(shù)原理來(lái)計(jì)算基本事件的總數(shù)。幾何概型02如果每個(gè)事件發(fā)生的概率與它的幾何度量(如長(zhǎng)度、面積、體積等)成比例,則稱之為幾何概型。在幾何概型中,可以使用分類加法計(jì)數(shù)原理來(lái)計(jì)算不同事件的概率。統(tǒng)計(jì)問(wèn)題03在統(tǒng)計(jì)問(wèn)題中,經(jīng)常需要計(jì)算不同類別數(shù)據(jù)的數(shù)量和比例。使用分類加法計(jì)數(shù)原理可以幫助我們準(zhǔn)確地計(jì)算這些數(shù)據(jù)。概率統(tǒng)計(jì)問(wèn)題在人口統(tǒng)計(jì)中,可以使用分類加法計(jì)數(shù)原理來(lái)計(jì)算不同地區(qū)、不同年齡、不同性別等人口的數(shù)量和比例。人口統(tǒng)計(jì)在市場(chǎng)調(diào)查中,可以使用分類加法計(jì)數(shù)原理來(lái)計(jì)算不同產(chǎn)品、不同品牌、不同消費(fèi)者群體等的銷售情況和市場(chǎng)份額。市場(chǎng)調(diào)查在醫(yī)學(xué)診斷中,可以使用分類加法計(jì)數(shù)原理來(lái)計(jì)算不同癥狀、不同疾病、不同治療方法等的出現(xiàn)頻率和治療效果。醫(yī)學(xué)診斷實(shí)際生活中的應(yīng)用03分步乘法計(jì)數(shù)原理應(yīng)用復(fù)雜事件的概率對(duì)于復(fù)雜事件,可以將其分解成若干個(gè)簡(jiǎn)單事件,然后根據(jù)乘法原理計(jì)算其概率。乘法原理如果一件事可以分成連續(xù)的兩個(gè)部分,且第一部分的完成方式與第二部分無(wú)關(guān),那么這件事的完成方式就是兩部分完成方式的乘積。注意事項(xiàng)在計(jì)算過(guò)程中,要確保每個(gè)簡(jiǎn)單事件是相互獨(dú)立的,且所有簡(jiǎn)單事件的概率之和為1。復(fù)雜事件概率計(jì)算從n個(gè)元素中取出m個(gè)元素進(jìn)行排列,其排列數(shù)為n(n-1)(n-2)...(n-m+1)。排列問(wèn)題組合問(wèn)題注意事項(xiàng)從n個(gè)元素中取出m個(gè)元素進(jìn)行組合,其組合數(shù)為C(n,m)=n!/[m!(n-m)!]。在求解排列組合問(wèn)題時(shí),要注意區(qū)分排列和組合的區(qū)別,以及元素是否允許重復(fù)等條件。030201排列組合問(wèn)題求解在設(shè)置密碼時(shí),通常會(huì)要求密碼包含大小寫字母、數(shù)字和特殊字符等不同類型的字符。這時(shí)就可以運(yùn)用分步乘法計(jì)數(shù)原理來(lái)計(jì)算密碼的可能性。密碼設(shè)置在購(gòu)買彩票時(shí),通常需要選擇一組數(shù)字作為彩票號(hào)碼。這時(shí)也可以運(yùn)用分步乘法計(jì)數(shù)原理來(lái)計(jì)算不同選號(hào)方式的中獎(jiǎng)概率。彩票選號(hào)在規(guī)劃從起點(diǎn)到終點(diǎn)的路徑時(shí),可以運(yùn)用分步乘法計(jì)數(shù)原理來(lái)計(jì)算不同路徑的數(shù)量和可能性,以便選擇最優(yōu)路徑。路徑規(guī)劃實(shí)際生活中的應(yīng)用04計(jì)數(shù)原理綜合應(yīng)用概率統(tǒng)計(jì)中的排列組合闡述如何利用排列組合的知識(shí)來(lái)解決概率統(tǒng)計(jì)中的問(wèn)題,如計(jì)算事件的概率、期望和方差等。典型例題解析通過(guò)具體例題,詳細(xì)解析排列組合在概率統(tǒng)計(jì)中的應(yīng)用,幫助學(xué)生掌握解題方法。排列組合基本概念介紹排列和組合的定義、公式及計(jì)算方法,為后續(xù)的概率統(tǒng)計(jì)打下基礎(chǔ)。排列組合與概率統(tǒng)計(jì)結(jié)合03復(fù)雜事件概率計(jì)算技巧介紹針對(duì)不同類型的復(fù)雜事件,如何選擇合適的計(jì)算方法和技巧,提高解題效率。01復(fù)雜事件的定義與分類介紹復(fù)雜事件的概念及分類方法,幫助學(xué)生理解何為復(fù)雜事件。02條件概率與獨(dú)立事件闡述條件概率和獨(dú)立事件的定義及計(jì)算方法,為復(fù)雜事件概率計(jì)算提供基礎(chǔ)。復(fù)雜事件概率計(jì)算技巧123列舉生活中常見(jiàn)的計(jì)數(shù)問(wèn)題,如彩票選號(hào)、密碼設(shè)置等,引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際生活中。生活中的計(jì)數(shù)問(wèn)題闡述在決策過(guò)程中如何利用概率分析來(lái)評(píng)估不同方案的風(fēng)險(xiǎn)和收益,幫助學(xué)生理解概率在決策中的應(yīng)用。決策中的概率分析介紹一些社會(huì)現(xiàn)象背后的統(tǒng)計(jì)規(guī)律,如人口分布、交通擁堵等,拓寬學(xué)生的視野并激發(fā)其學(xué)習(xí)興趣。社會(huì)現(xiàn)象中的統(tǒng)計(jì)規(guī)律實(shí)際生活中的應(yīng)用05典型例題解析與討論例題1從5個(gè)不同的紅球和4個(gè)不同的白球中,任取3個(gè)不同的球,求取得紅球個(gè)數(shù)多于白球個(gè)數(shù)的取法種數(shù)。例題2有5本不同的書(shū),分給4個(gè)同學(xué),每人至少1本,有多少種不同的分法?解題思路首先分析題意,將問(wèn)題轉(zhuǎn)化為求將5本書(shū)分成4份,每份至少1本的分法種數(shù)。然后利用分組問(wèn)題的方法,將5本書(shū)分成4份,再利用排列數(shù)公式計(jì)算4份書(shū)分給4個(gè)同學(xué)的分法種數(shù)。解題思路首先分析題意,將問(wèn)題轉(zhuǎn)化為求取得1紅2白、2紅1白、3紅的取法種數(shù)之和。然后利用組合數(shù)公式分別計(jì)算各種情況的取法種數(shù),最后相加即可。典型例題介紹及解題思路學(xué)生自主完成例題2,并討論解題思路是否正確,是否有其他解法。學(xué)生分組討論兩道例題的異同點(diǎn),以及解題過(guò)程中遇到的困難和解決方法。學(xué)生自主完成例題1,并討論解題思路是否正確,是否有其

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論