![長時儲能:示范項目總結(jié)-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第1頁](http://file4.renrendoc.com/view5/M00/34/3E/wKhkGGYnG8CAAtH8AADj1Wa0xOI691.jpg)
![長時儲能:示范項目總結(jié)-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第2頁](http://file4.renrendoc.com/view5/M00/34/3E/wKhkGGYnG8CAAtH8AADj1Wa0xOI6912.jpg)
![長時儲能:示范項目總結(jié)-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第3頁](http://file4.renrendoc.com/view5/M00/34/3E/wKhkGGYnG8CAAtH8AADj1Wa0xOI6913.jpg)
![長時儲能:示范項目總結(jié)-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第4頁](http://file4.renrendoc.com/view5/M00/34/3E/wKhkGGYnG8CAAtH8AADj1Wa0xOI6914.jpg)
![長時儲能:示范項目總結(jié)-Long-Duration Energy Storage Emerging Pilot Project Summaries 2024_第5頁](http://file4.renrendoc.com/view5/M00/34/3E/wKhkGGYnG8CAAtH8AADj1Wa0xOI6915.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Long-DurationEnergyStorage:EmergingPilotProject
Summaries
SI:EPRIInsight
in
f
www.epri.com
?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
Introduction
Purpose:
ThisreportsummarizesrecentpilotprojectsofLong-DurationEnergyStorage(LDES)technologies,specificallytechnologiesdevelopedbyCMBlu,EnergyDome,StorworksPower(Storworks),andRedoxBlox.1Itaimstoprovidehighlightsonthetechnologicalprocesses,performanceandcostmetrics,andpotentialviabilityasdemonstratedthroughfieldworkoftheseemergingenergystoragesolutions.Byexaminingthesepilotprojects,thereportprovidesinsightsintounderstandinghowthesetechnologiesfunctionandhowtheymayfitintoperspectiveportfoliostoenhancegridstabilityandvariablerenewableenergyutilization.Pleasenotethattheprojectionsandevaluationswithinthisreportareprimarilybasedonforward-lookingstatementsfromthemanufacturersoftheLDEStechnologiesandhavenotbeenindependentlyverifiedbyEPRI,exceptwhereexplicitlystated.
Relevance:
Insightsfromtheseenergystoragepilotprojectsofferhigh-levelqualitativeandquantitativeinformationforutilities.Theseinsights
includesummariesofperformanceandcostdata,whichareimportantforevaluatingLDESsystems.2,3Additionally,thereporthighlightsactivitiesandfindingsfromthepilottesting,providingabetterunderstandingofthestatusandmaturityofthesetechnologiesandtheirusecases.Byunderstandingtheperformance,costs,andmaturityofthesepilotprojects,utilitiescanmakemoreinformeddecisions
aboutthepotentialbenefitsofLDEStechnologiesfortheirenergyportfolio.4Moredetailsontheseandotherenergystorage
technologiescanbeobtainedthroughparticipationinEPRI'sProgram94“EnergyStorageandDistributedGeneration”andProgram221“BulkEnergyStorage.”
1EnergyStorageTechnologyDatabase(ESTD)v1.0.EPRI,PaloAlto,CA:2023.
2EPRIInsights:CurrentEvents,IndustryForecasts,andR&DtoInformEnergyStrategy.EPRI,PaloAlto,CA:2022.
3002025959
.
3Long-DurationEnergyStorage:PotentialUseCasesandTechnology.EPRI,PaloAlto,CA:2021.
3002019019.
4Long-DurationEnergyStorageBenefits.EPRI,PaloAlto,CA:2021.
3002021099
.
2?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
EmergingLDESTechnologiesOverview
Electrochemical:Usesreversiblechemicalreactionstogenerateelectricity,withlithiumionbatteriesbeingtheprincipaltechnology.Newelectrochemicalbatteriesrepresentapromisingfrontierinlong-durationenergystorage.Thesetechnologiesuselow-costrawmaterialssuchaszincandironintheactivematerialsthatstoreenergy.Thesebatteriesarescalable,withprojectedlowmarginal
costofenergy,makingthemsuitableforapplicationsrequiredsustainedenergydelivery,suchasrenewableintegrationandbackuppower.
Mechanical:Harnesseskineticorpotentialenergytostoreandreleaseenergy.Potentialenergysystems,suchaspumpedhydro
storage,usegravityandinvolveliftingmasswhenchargingandloweringittospinageneratortocreatepowerwhendischarging.
Kineticenergysystems,suchascompressedairenergystorage(CAES),generallycompressaworkingfluidwhencharging,storingitatpressure,thenexpandingittodriveaturbinewhendischarging.Awidearrayofemergingmechanicalenergystoragesystemsarebeingdeveloped,whichpromiselowercostandhigherround-tripefficiency(RTE),alongwitheasiersiting.
Thermal:Storesandreleasesenergyintheformofheat.Heatcaneitherbestoredsensiblyusingmediasuchasconcrete,gravel,
sand,orsaltorusingaphase-changematerial,whichprovidesadditionalheatfromphasetransitions.Whencharging,themediumis
eitherheatedbyahotfluidorelectrically,andwhendischarging,aworkingfluidisheatedtoeitherdriveapowercycle,orto
provideheatdirectlytoaprocess.Thermalenergystorage(TES)hasthepotentialtobethelowestcostLDESsystem,balancedbylowerefficiencies.
Chemical:Involvescreatingalow-carbonfuelorperformingareversiblethermochemicalreactionthatcangenerateheat.Hydrogen
istheprimarylow-carbonfuelcandidateandcanbegeneratedusingelectrolysis,orchemicallythroughreformingafossilfuel,
coupledwithcarboncaptureandstorage.Othercandidatelow-carbonfuelsincludeammoniaandbio-fuels.Oncecreated,thesefuelscanbestoredforuptoseasonalperiodsandburnedinconventionalpowergenerators.Thermochemicalsystemsusea
compoundthatcombinedwithairorwatergeneratesheattodriveapowercycle,thatisthenreformedtorepeattheprocess.
3?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
CMBlu(Electrochemical)
CMBlu'sOrganicSolidFlowbatteryisaredox(reduction-oxidation)flowbattery(RFB)containingelectrolytesinthesolidandliquidform.
Nearlyalltheenergyisstoredinacarbon-basedsolid.Theliquid
electrolyteactsasashuttle,movingchargedionsbetweenpositiveandnegativesidesthroughthebatterystacktochargeanddischarge.Theseparatetanksandstacksmakeitpossibletoscalepowerandcapacityindependently.
TechnologyBenefits
LongLifetime:Theseparationofelectrolytesintankseliminatessomemechanismsofcapacitydegradation.Thetechnologyis
projectedtohavea20-yearprojectlife,capableofover20,000cycles,withminimallossofcapacityduetocycling.
CostEffective:Abundantcarbon-basedmoleculesforthe
electrolytehavethepotentialtobelowcostwhenmanufacturedatscale.Thisincombinationwiththelonglifetimecanmakethetechnologycostcompetitiveatscale.
Figure1.SchematicoftheOrganicSolidFlowBattery
Figure1showstheoperationofCMBlu'sSolidFlowbattery.Twoexternaltankscontainingdifferentelectrolytes,onepositively
charged,andonenegativelycharged,areconnectedtothestackviapumpsthatdelivertheelectrolytestothepowermodule.
Theyarepreventedfrommixingbyathinmembraneandpass-overporouselectrodestocauseeitherachargingordischarging.
Tocharge,oxidationoccursattheanodecausingalossin
electrons,whichflowinthepowermoduleandtothecathode.Theprocessisreversedtodischarge,wheretheanode
experiencesreductionandthecathodeexperiencesoxidation.
4?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
CMBlu(Electrochemical)
Process
TheOrganicSolidFlowbatteryismadeupoftwoexternaltanks,abatterystackandapowermoduleconnectingthebatterytothegrid.Theexternaltanks
containeitheranolyteoracatholyte(positivelyornegativelycharged
electrolyterespectively).Eachoftheelectrolytesarecomposedofanactive
solidandliquidmaterialofmatchingpotentials.Thebatterystackismadeupoffourcomponentsinarepeatingorder.Theelectrodesfacilitatetheredox
reaction.Themembraneisaninsulatorthatselectivelyallowsionmigrationbutpreventsthedifferentelectrolytesfrommixing.Currentcollectorsfacilitatetheflowofelectricchargeandconnectthestacktothegrid.Theendplatesprovidemechanicalsupportandelectricalinterfacestothepowerconversionsystem.
Thebatteryoutputisdependentonthematerialandsurfaceareaofelectrodes,thestacksize,andthekineticsoftheredoxprocess.
Pilot
CMBluiscollaboratingwithWECEnergyGroupandEPRItoinstalla1–2MWhpilotprojectatValleyPowerPlantinMilwaukee,WItotesttheperformanceofthebatterysystem,includingdischargedurationsoffivetotenhours.5Initial
testingofasingleDCmoduleprototypewassuccessfulatthepowerplantin
December2023withtestingon-siteinitializationofthemodule,severalchargeanddischargeratesandprovidingcriticallogisticalexperiencewithsea,rail,
andtrucktransport.Aspartofthepilotproject,WEC,EPRI,andCMBlu
conductedadetailedhazardmitigationanalysis(HMA)ofthebatterymodule,focusingonpotentialhazardstopersonnel.TheHMAusedtheEnergyStorageIntegrationCouncilFlowBatteryHMAGuideandprovidedinputtopilottestplansandsafetychecklists.
5“WECEnergyGroupAnnouncesProjecttoDemonstrateLong-durationOrganicFlowBatteryStorage,”
February2,2023.
/news-releases/wec-energy-group-announces-project-to-
demonstrate-long-duration-organic-flow-battery-storage-301737840.html
.
Figure2.ModularBattery(usedwithpermissionfromCMBlu)
CMBlu’sOrganicSolidFlowbatterymoduleisbeingdesignedtoenablescalability.Figure2showshowthemodulescanbe
stackedtoincreasethesystem-levelenergydensity.Eachmodulehasatargetedfootprintof21.5–26.9ft2(2–2.5m2),depending
onduration,anda50MW,250MWhsystemhasaprojectedfootprintof33,906ft2(3150m2)forthebatteryportion.
5?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
EnergyDome(Mechanical)
EnergyDomehasdevelopedaCO2BatterysystemforLDES,utilizingcarbon
dioxideasthestoragemedium.Thissystem,whichoperatessimilarlytoCAESbutusesCO2storedabove-groundinsteadofairstoredbelow-ground.Key
featuresincludeefficientheatcaptureduringCO2compressionandaflexible,above-groundCO2gasdome,allowingfordiversesitingpossibilities.Thepilotproject,a2.5MWe/4MWhegrid-connectedunit,hassuccessfully
demonstratedthetechnology'sviabilityandwascompletedintwoyearsdespiteglobalchallenges.EnergyDomeplansalarger-scale20MWe,200MWheplantbylate2024.Thetechnologyistargetedforutilitiesand
industries,includingremoteminingoperations.
TechnologyBenefits
EnergyEfficient:EnergyDome'sCO2Battery,leveragingcommercially
availablecomponents,targetsan18-monthdevelopmentcycleandhasa
RTEof75–80%with100%depthofdischarge.Designedforalifespan
exceeding30years,itoperateswithoutcapacityorpowerdegradation.Thesystem'senergydensityis1.9kWh/ft3(67kWh/m3),surpassing
conventionalCAESsystems.A200MWhinstallationrequiresa10–12-acre(4–4.9hectares)footprintor17–20MWhe/acre(42–49.4MWhe/hectare).
CostEffective:Thecapitalcostsareestimatedat$150–220/kWh,withthelevelizedcostofstorageprojectedunder$100/MWhforearlyprojects,withthepotentialtoreduceto$50–60/MWh.Challengesincludesitingdueto
visualimpactofthedome.Thedomeisaninflatablestructurethatcanbeeasilyremovedattheendoflifeoftheproject.TheCO2Batterydoesnothaveanymajorenvironmentalimpactsasitonlyusessteel,water,andCO2initsfunctioning.
Figure3.ChargingEnergyDome'sCO2Battery
InFigure3,theCO2Battery'schargingprocessinvolvesamulti-stagecompressorpoweredbyanelectricmotor,compressingCO2tomediumpressure.Thisprocessgeneratesheat,whichisstoredintwotypesofTESsystems:aprimarypressurizedpackedparticle-bedsystemfor
directheattransfer,andasecondarytubularheatexchangersystemthatcoolstheCO2toaliquid/densephaseforstorageinabove-groundpressurevessels.
Figure4.DischargingEnergyDome'sCO2Battery
InFigure4,theCO2Battery'sdischargingprocessinvolvesreversingthechargingcycle.High-
pressureliquid/dense-phaseCO2isvaporizedandheatedbypassingthroughawater-tube
heatexchanger,servingasanevaporator,andthenthroughaTESpackedparticlebed.ThehotgaseousCO2expandsthroughaturbineconnectedtoagenerator,supplyingelectricitytothegrid.Afterexpansion,theCO2iscooledtoambienttemperatureforstorageinthedome's
bladder.Thissystemisengineeredfordailyuseovera30+yearlifespanwithoutdegradation.
6?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
EnergyDome(Mechanical)
Process
EnergyDome'sCO2BatterysystemutilizesCO2'suniquepropertyof
transitioningtoaliquidphaseatambienttemperatureundermoderatepressure.ThestorageprocesscompressesatmosphericCO2tomediumpressure,efficientlycapturingandstoringtheheatgeneratedduring
compressionintwoTESsystems.Whenelectricityisneeded,thestoredCO2
isreheatedandexpandedthroughaturbinetogeneratepower.The
system'sarchitectureallowsforconsistentoperationover30yearswith
dailycyclingandcanaccommodatecharge/dischargecyclesrangingfrom4to24hours.TohousetherequiredsubstantialquantitiesofCO2,adome
storagestructureisneeded,which,despiteitslargefootprint,remainscost-
effectiveduetotheuseofeconomicalmaterialsandminimalisticsitepreparationrequirements.
Pilot
TheCO2Batterysystem'sprojectedRTEof75–80%hingesonthe
performanceoftheTESmodulesandtheefficiencyofthecompressorsand
turbines.AchievingthisRTEonalargescalewouldmakethesystem
especiallysuitedforapplicationsrequiringhighdepthofdischargecycling
whileavoidingthedegradationissuescommoninelectrochemicalbatteries.
ThepilotplantinSardinia,withacapacityof2.5MWe/4MWhe,has
demonstratedpromisingresults,confirmingthesystem'santicipated
operationalcapabilities.TheseoutcomeshaveplacedEnergyDome's
technologyatTechnologyReadinessLevel7,reflectingitssuitabilityfor
broadercommercialapplicationandsignalingasignificantstepforwardinsustainableenergystoragesolutions.
Figure5.CO2Battery'sDome-ShapedHousingfortheInflatableBladderHoldingtheCO2inDischargeModeatAtmosphericPressure(usedwithpermissionfromEnergyDome
Figure5displaysEnergyDome's2.5MW,4MWhCO2Batteryunitin
Sardinia,whichhasbeenoperationalsinceMay2022.Ithighlightsthe
plant'sreal-worldoperationalandgrid-supportcapabilities.EnergyDomeisalsoinadvancedplanningforacommercial-scale20MW,200MWh
plantatthesamelocation,andhasseveralagreementsforadditional
projectsinItalyandbeyond,includingwithAlliantEnergy,whichasprimewonaUnitedStatesDepartmentofEnergyawardin2023toinstalla
commercial-scaleEnergyDomesysteminWisconsin.
7?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
StorworksPower(Thermal)
Storworksisdevelopingsystemstostoreenergyusingheat.Theyfocuson
thermalpowerplants,especiallythoseusingfossilfuels,solarconcentration,ornuclearenergy.Stackableblocksmadeofconcretematerialareusedtostore
theheat.Usingconcretehasproventobecostefficientandflexible.Chargingoccursbypassingeitherhotgas,steam,orhotairthroughsteeltubesintheconcreteblocks.Tousethestoredenergy,aworkingfluidsuchaswateror
carbondioxideispassedthroughseparatetubesintheconcreteblockstorecovertheheatanddeliverittoapowercycle.
Storworksmakesthreedifferentdesigns;differentsystemconfigurationsoffersolutionsforindustrialdecarbonization.
TechnologyBenefits
EnergyEfficient:Inanormalcombinedcycleplant,thegasturbinesmake
abouttwo-thirdsofthetotalpowerwiththeremainderbeingfromasteam-Rankinebottomingcycle.Usingtheconcreteheatrecoverysteamgenerator(HRSG),theturbinescanbesizedsmallerandrunefficientlyalldaylong,
sendingextraenergytotheheatstoragesystemwhenpowerisnotneededandreleasingthisenergywhenneeded.TheRTEis35–45%basedonthe
capabilityofthepowercyclethesystemisattachedto.
CostEffective:Unlikeotherenergystoragesystemsthatstoreheatusingspecializedmaterialsandrequireproprietarypowercyclestogenerate
energy,theStorworksconcretemodulesutilizeexistingpowerplant
hardware,includingthesteamturbine-generators,therebyreducingcapitalcostsfordeployment.Storworksanticipatesthecostofasystemexceeding10hoursofdurationretrofittedtoanexistingsteamturbineassetwouldbe$60–105/kWhe.
Figure6:StorworksBolderBlocs(usedwithpermissionfromStorworksPower,Inc.)
TheStorworksconcretemodules,showninFigure6,arelarge,flatblocks
withembeddedpipessetintothem.Eachtubehasabout2inches(5cm)ofconcretesurroundingthetubeenablingconductiveheattransfer.The
modules,called"BolderBlocs,"areabout40feet(12m)long,allowingthemtobeshippedonaregularflatbedtruck.Wheninstalled,theyarestacked
andconnectedusinganetworkofpipesanddistributionmanifolds.The
finalstackedassemblyiscoveredwithhigh-temperaturerockwool
insulationandcladwithwaterproofmetalsheetsforweatherprotection.Thefootprintisexpectedtobe>500MWhe/acre(1235MWhe/hectare).
8?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
Figure7:StorworksPlantGastonPilot(usedwithpermissionfromSouthernCompany)
TheConcreteThermalEnergyStorage(CTES)pilotplant,showninFigure7,consistsof7layersof
BolderBlocsstackedinabrickwork-likepatternalongwithanadditionalcoolingblocklayeratthe
bottomneededtoinsulatethefoundationsduringoperation.SupercriticalsteamfromthehostsiteenterstheCTESduringcharging(topright),warmingtheCTESandtherebygeneratinghigh-pressurecondensatethatisfurthercooledusingtheheatexchanger(bottomleft)beforebeingdepressurizedandstoredinalocalvessel(topleft).Thiscondensateisreusedduringdischargebypumpingtohighpressureandreversingtheflow,enteringtheCTESatthebottombeforebecomingsuperheated
steam,whichismeasuredandventedtoasafelocation.
StorworksPower(Thermal)
Pilot
TheCTESpilotplant,showninFigure7,isa10-MWhescale(2.5MWex4
hours)systematAlabamaPower'sPlantGastoninWilsonville,AL.LeadbyEPRIandfundedbytheU.S.DepartmentofEnergy,thisfacilityisdemonstratingthetechnology'sperformanceforthesteam-heatedversionbychargingusing
supercriticalsteamatapressureof3500psig(240barg)fromthehostplant
anddischargingatvariouspressuresanddurationstoquantifyperformance
andflexibilityofthesystemthroughoutthefullcharginganddischargingcycles.
Process
Fortheelectricalchargingversion,hotairisgeneratedviathermalheating
elementsandisfedthroughtheconcreteblocksfromthehotendtothecoldend.Thiscreatesa"thermocline"effectwithintheconcrete,forminga
consistenttemperaturezoneforheattransferfromthehottothecoldpart.Asthechargingprogresses,thetemperatureoftheblockmaterialincreases,
approachinghotairinlettemperature.Thisallowshotterairtoheatcooler
concretematerialfurtherintotheassembly.Fordischarge,theprocessis
reversedwithcoolairbeingheatedbytheblocksbeforebeingpassedtoaheatrecoverysteamgeneratortoraisesteamforpowergeneration.
NextSteps
StorworkshasbeendevelopingseveralvariantsoftheCTESsystem:
.FlexJoule:Designedtobechargedusingelectricityfromcurtailedrenewablesources,thisdesignusesairasaheattransferfluidtochargeanddischargetheBolderBlocsandaconventionalHRSGtoraisesteamforheatandpower.
.FlexOps:Steam-integratedBolderBlocsthatchargefromanddischargetoafossilplanttoreduceplantcyclingandlimitthenumberofstarts
Storworksisactivelylookingforcommercialopportunitiesforthesesystemsforstand-aloneindustrialdecarbonizationandfossilretrofittingapplications.
9?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
RedoxBlox(Chemical)
TheRedoxBloxsystem,leveragingmagnesium-oxide(MgXO3)pellets,operatesthroughtwomodes:charginganddischarging.
Charging:MgXO3pelletsareheatedfrom1830°F(1000°C)to2730°F(1450°C)withina
pressurevessel,inducinganendothermicreductionreaction.ThissplitsMgXO3intoMgXO2andreleasesoxygengas.Thisreactionstoresenergyinthesystem,withacapacityof
approximately64,000Btu/ft3(660kWhth/m3).Discharging:Pressurizedairintroduced
intothevesselreactswithMgXO2,reversingthepreviousreactionandreformingMgXO3.Heatgeneratedduringthisreactionisusedinagasturbine(GT)-generatortoproduce
electricityat50-55AC-AC%RTEwhenintegratingwithacombined-cycleGT.Thesystem'sdesigniscompatiblewithstandardGT-generators,enablingittointegrateintoexisting
energyinfrastructures.Thestoragesystemcanalsoproducehightemperatureheatforindustrialheatingapplicationswith90-95heat-heat%RTE.
TechnologyBenefits
HighEnergyDensityandLowPelletCost:RedoxBloxachievescompactenergystoragewithhighenergydensity–itsfootprintis1500–1800
MWhe/acre(3704–4444MWhe/hectare).TheproductioncostofitsMgXO3chemicalpelletsisanticipatedtorangefrom$600–800/ton
(equivalentto$1.8–2.4/kWhth).
CommerciallyCompatible:RedoxBloxisworkingtowardsbothindustrialheatingandelectricalpowergeneration.RedoxBloxismakingitssystemdirectlycompatiblewithcommercialturbomachinery,byrepurposing
existinginfrastructure,includinganaturalgascombinedcycleplant's
heatrecoverysteamgenerator,steamturbines,andelectricalswitchgear.
Figure8.SchematicoftheRedoxBloxThermochemicalEnergyStorageSystem
Figure8detailstheprocessflowoftheRedoxBloxthermochemicalenergy
storagesystem.Chargingmodestartswithheatingviaelectrodespassing
electricalcurrentthroughtheparticlebed,whichraisesthetemperatureoftheMgXO3particlebedwithinapressurevessel.Thisheatinducesachemical
reactionthatstoresenergy.Insulationbyfirebrickandhigh-temperature
materialsensuresminimalthermalloss.Oxygenproducedduringthismodeis
expelledbyanO2blower.Dischargemodestartswithcompressedairfedtotheparticlebed.Oxygenintheairisabsorbedandreleaseschemicalenergyas
heat.Theheatedairfromtheparticlebeddrivesaturbine,generating
electricityforthegrid.Thisdiagramillustratestheenergystorageprocess,fromintakeairtoelectricitygeneration,highlightingthesystem'skeycomponents
andthermalmanagementstrategy.
10?2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
Institute,Inc.Allrightsreserved.
RedoxBlox(Chemical)
PilotDesignCharacteristics
.Nominalstoragecapacity:100kWhth
.Two-thirdsratioofchemical-sensibleheatstorage
.Powerinput:15kWe(electricallyresistiveheaters)
.Thermalpoweroutput:10–20kWth
.Coreoperatingtemperature:1832–2642°F(1000–1450°C)
.Pressurerange:2.4–72.5psia(0.2–5bara)
.Surfacetemperature:<185°F(85°C)
.Bedpressuredrop:<0.15psi(1kPa)
Systemcontrolsweredevelopedtoestablishpressurecontrolloops,setacombinedpowerinputtothesystem,holdaconstanttemperatureovernight,andpreventpressureor
temperatureinthereactorfromsurpassingsafelimits.6
NextSteps
Movingforwardfortheelectricalpowerapplication,RedoxBloxwasrecentlyawarded$9M
fromtheCaliforniaEnergyCommissionfora10MWhth,100kWeprojecttostartoperationin2026.Thesystemwillbemoreoptimizedforheattransferandthepreventionofheatloss,and
itwillreduceassemblyandmaintenanceissuesexperiencedbythepilotsystem.Asafollowup,RedoxBloxisdevelopingoptionstodemonstratethenextscalewith2MWepower
capacity.
Figure9.RedoxBloxEnergyStorageModules(a)and(b)(usedwithpermissionfromRedoxBlox)
Figure9underscorestheprogressionofRedoxBlox'stechnologyfrominitialconcepttolarger-scaleprototypes,eachstepvalidatingandrefiningthesystem'scapabilities.Thesuccessfuloperationofearlierprototypeslaidthegroundworkforthedevelopmentofasmall-scalepilot,drivingthe
technology'spotentialtowardpracticalapplication.
(a)Sub-ScalePrototype(picturedontheleft):Featurestheadvanced10kWhthcapacity
prototype,whichunderwentover1400hoursofcharge-dischargecyclingin2021,highlightingthesystem'schemicalstability.
(b)Small-ScalePilot(picturedontheright):Featurescommercial-designedtemperaturesandpressureswithsimulatedchargeanddischargemodesat100kWhthcapacity,validatingcontrolstrategiesandcapabilities.
RedoxBloxisalsodevelopingitstechnologyforindustrialheatingapplications.Forscale-up,
R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南政法職業(yè)學(xué)院《電力變換技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東機電職業(yè)技術(shù)學(xué)院《跨國企業(yè)管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年X射線螢光光譜儀合作協(xié)議書
- 四川大學(xué)錦江學(xué)院《質(zhì)量管理與控制》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年FS-L系列柔軟劑合作協(xié)議書
- 遼寧石油化工大學(xué)《測量綜合》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年醫(yī)用氮氣系統(tǒng)合作協(xié)議書
- 江蘇省南通市海安高級中學(xué)2022-2023學(xué)年高一上學(xué)期11月期中考試生物試題
- 廣東省茂名市2023-2024學(xué)年高三調(diào)研數(shù)學(xué)試題試卷詳細解析
- 2025年中國叉車輥子軸承市場調(diào)查研究報告
- 女性生殖系統(tǒng)解剖與生理 生殖系統(tǒng)的血管淋巴和神經(jīng)
- 江蘇省2023年對口單招英語試卷及答案
- 易制毒化學(xué)品安全管理制度匯編
- GB/T 35506-2017三氟乙酸乙酯(ETFA)
- GB/T 25784-20102,4,6-三硝基苯酚(苦味酸)
- 特種設(shè)備安全監(jiān)察指令書填寫規(guī)范(特種設(shè)備安全法)參考范本
- 硬筆書法全冊教案共20課時
- 《長方形的面積》-完整版課件
- PDCA降低I類切口感染發(fā)生率
- 工業(yè)企業(yè)現(xiàn)場監(jiān)測工況核查表
- 沉淀池及排水溝清理記錄表
評論
0/150
提交評論