![基本初等函數(shù)總復(fù)習(xí)_第1頁](http://file4.renrendoc.com/view5/M01/12/31/wKhkGGYoVYqASuiMAAG-QFLxqzY396.jpg)
![基本初等函數(shù)總復(fù)習(xí)_第2頁](http://file4.renrendoc.com/view5/M01/12/31/wKhkGGYoVYqASuiMAAG-QFLxqzY3962.jpg)
![基本初等函數(shù)總復(fù)習(xí)_第3頁](http://file4.renrendoc.com/view5/M01/12/31/wKhkGGYoVYqASuiMAAG-QFLxqzY3963.jpg)
![基本初等函數(shù)總復(fù)習(xí)_第4頁](http://file4.renrendoc.com/view5/M01/12/31/wKhkGGYoVYqASuiMAAG-QFLxqzY3964.jpg)
![基本初等函數(shù)總復(fù)習(xí)_第5頁](http://file4.renrendoc.com/view5/M01/12/31/wKhkGGYoVYqASuiMAAG-QFLxqzY3965.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
精品文檔精品文檔精品文檔精品文檔精品文檔精品文檔指數(shù)函數(shù)總復(fù)習(xí)【知識(shí)點(diǎn)回顧】一、指數(shù)與指數(shù)冪的運(yùn)算(1)根式的概念①如果SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0叫做SKIPIF1<0的SKIPIF1<0次方根.當(dāng)SKIPIF1<0是奇數(shù)時(shí),SKIPIF1<0的SKIPIF1<0次方根用符號(hào)SKIPIF1<0表示;當(dāng)SKIPIF1<0是偶數(shù)時(shí),正數(shù)SKIPIF1<0的正的SKIPIF1<0次方根用符號(hào)SKIPIF1<0表示,負(fù)的SKIPIF1<0次方根用符號(hào)SKIPIF1<0表示;0的SKIPIF1<0次方根是0;負(fù)數(shù)SKIPIF1<0沒有SKIPIF1<0次方根.②式子SKIPIF1<0叫做根式,這里SKIPIF1<0叫做根指數(shù),SKIPIF1<0叫做被開方數(shù).當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0為任意實(shí)數(shù);當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0.③根式的性質(zhì):SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0.(2)分?jǐn)?shù)指數(shù)冪的概念①正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是:SKIPIF1<0且SKIPIF1<0.0的正分?jǐn)?shù)指數(shù)冪等于0.②正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是:SKIPIF1<0且SKIPIF1<0.0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù).(3)分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0二、指數(shù)函數(shù)及其性質(zhì)(4)指數(shù)函數(shù)函數(shù)名稱指數(shù)函數(shù)定義函數(shù)SKIPIF1<0且SKIPIF1<0叫做指數(shù)函數(shù)圖象SKIPIF1<0SKIPIF1<0001001定義域SKIPIF1<0值域(0,+∞)過定點(diǎn)圖象過定點(diǎn)(0,1),即當(dāng)x=0時(shí),y=1.奇偶性非奇非偶單調(diào)性在SKIPIF1<0上是增函數(shù)在SKIPIF1<0上是減函數(shù)函數(shù)值的變化情況y>1(x>0),y=1(x=0),0<y<1(x<0)y>1(x<0),y=1(x=0),0<y<1(x>0)SKIPIF1<0變化對(duì)圖象的影響在第一象限內(nèi),SKIPIF1<0越大圖象越高,越靠近y軸;在第二象限內(nèi),SKIPIF1<0越大圖象越低,越靠近x軸.在第一象限內(nèi),SKIPIF1<0越小圖象越高,越靠近y軸;在第二象限內(nèi),SKIPIF1<0越小圖象越低,越靠近x軸.【考點(diǎn)鏈接】考點(diǎn)一、指數(shù)的運(yùn)算例1.化簡:.例2.根據(jù)下列條件求值:已知SKIPIF1<0,求SKIPIF1<0的值;練習(xí)1:計(jì)算:(1)(2).(3)SKIPIF1<0(4)SKIPIF1<0考點(diǎn)二、定義域例3.求下列函數(shù)的定義域:練習(xí)2.求下列函數(shù)的定義域:(1)(2)考點(diǎn)三、值域例4.函數(shù)的值域練習(xí)3、(1)求函數(shù)的值域.(2)求下列函數(shù)的定義域、值域:(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0考點(diǎn)四、指數(shù)型函數(shù)例5.已知函數(shù)SKIPIF1<0的定義域?yàn)閇0,1],則值域?yàn)?。練?xí)4.若方程SKIPIF1<0有正數(shù)解,則實(shí)數(shù)SKIPIF1<0的取值范圍是考點(diǎn)五、函數(shù)的奇偶性與解析式例6.(1)函數(shù)是奇函數(shù),且當(dāng)時(shí),,則時(shí),_____.(2)設(shè)是上的偶函數(shù),則________________.練習(xí)5.(1)定義在上的函數(shù)是奇函數(shù),且當(dāng)時(shí),,則時(shí),__________.(2)已知函數(shù),若為奇函數(shù),則________________.(3)已知SKIPIF1<0,試判定SKIPIF1<0的奇偶性??键c(diǎn)五、函數(shù)的單調(diào)性例7.(1)比較下列各組數(shù)的大小:(1)和;
(2)和;(3)和
.
(2)試比較SKIPIF1<0,SKIPIF1<0三者之間的大小關(guān)系。例8.已知函數(shù)SKIPIF1<0,(1)求使SKIPIF1<0成立的x值;(2)求使SKIPIF1<0、SKIPIF1<0均為增函數(shù)的單調(diào)區(qū)間;(3)求SKIPIF1<0和SKIPIF1<0的值域。練習(xí)6.(1)比較下列各組數(shù)的大?。海?)和;
(2)和;(3)和
.(2)設(shè)SKIPIF1<0,SKIPIF1<0,試確定SKIPIF1<0的大小關(guān)系??键c(diǎn)六、綜合應(yīng)用例9.已知函數(shù).(1)求的定義域和值域;(2)討論單調(diào)性.例10.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,是R上的增函數(shù),求a的取值范圍。練習(xí)7.已知函數(shù).(1)求的定義域和值域;(2)討論單調(diào)性.練習(xí)8.設(shè)SKIPIF1<0。(1)寫出函數(shù)SKIPIF1<0與SKIPIF1<0的定義域。(2)函數(shù)SKIPIF1<0與SKIPIF1<0是否具有奇偶性,并說明理由。(3)求出函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間?!菊n后練習(xí)】一、選擇題:1.某種細(xì)菌在培養(yǎng)過程中,每SKIPIF1<0分鐘分裂一次(一個(gè)分裂為兩個(gè))。經(jīng)過SKIPIF1<0個(gè)小時(shí),這種細(xì)菌由SKIPIF1<0個(gè)可繁殖成()SKIPIF1<0個(gè)SKIPIF1<0個(gè)SKIPIF1<0個(gè)SKIPIF1<0個(gè)2.在統(tǒng)一平面直角坐標(biāo)系中,函數(shù)SKIPIF1<0與SKIPIF1<0的圖像可能是()3.設(shè)SKIPIF1<0都是不等于SKIPIF1<0的正數(shù),SKIPIF1<0在同一坐標(biāo)系中的圖像如圖所示,則SKIPIF1<0的大小順序是()SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0 4.函數(shù)SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的大小關(guān)系是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.不能確定5.若SKIPIF1<0,那么下列各不等式成立的是()SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<06.函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的取值范圍是()SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<07.函數(shù)SKIPIF1<0的值域是()SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<08.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0是()SKIPIF1<0奇函數(shù)SKIPIF1<0偶函數(shù)SKIPIF1<0既奇又偶函數(shù)SKIPIF1<0非奇非偶函數(shù)9.函數(shù)SKIPIF1<0且SKIPIF1<0的圖像必經(jīng)過點(diǎn)()SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<010.某廠1998年的產(chǎn)值為SKIPIF1<0萬元,預(yù)計(jì)產(chǎn)值每年以SKIPIF1<0%遞增,則該廠到2010年的產(chǎn)值(單位:萬元)是()SKIPIF1<0%SKIPIF1<0SKIPIF1<0%SKIPIF1<0SKIPIF1<0%SKIPIF1<0SKIPIF1<0%SKIPIF1<0二、填空題:已知SKIPIF1<0是指數(shù)函數(shù),且SKIPIF1<0,則SKIPIF1<0設(shè)SKIPIF1<0,使不等式SKIPIF1<0成立的SKIPIF1<0的集合是函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0三、解答題:1.設(shè)SKIPIF1<0,求函數(shù)SKIPIF1<0的最大值和最小值。2函數(shù)SKIPIF1<0且SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值比最小值大SKIPIF1<0,求SKIPIF1<0的值。3.設(shè)SKIPIF1<0,SKIPIF1<0試確定SKIPIF1<0的值,使SKIPIF1<0為奇函數(shù)。4.已知函數(shù)SKIPIF1<0(1)求函數(shù)的定義域及值域;(2)確定函數(shù)的單調(diào)區(qū)間。5.已知函數(shù)SKIPIF1<0(1)求函數(shù)的定義域;(2)討論函數(shù)的奇偶性;(3)證明:SKIPIF1<0對(duì)數(shù)函數(shù)總復(fù)習(xí)【知識(shí)點(diǎn)回顧】一、對(duì)數(shù)與對(duì)數(shù)運(yùn)算對(duì)數(shù)的定義①若SKIPIF1<0,則SKIPIF1<0叫做以SKIPIF1<0為底SKIPIF1<0的對(duì)數(shù),記作SKIPIF1<0,其中SKIPIF1<0叫做底數(shù),SKIPIF1<0叫做真數(shù).②負(fù)數(shù)和零沒有對(duì)數(shù).③對(duì)數(shù)式與指數(shù)式的互化:SKIPIF1<0.(2)幾個(gè)重要的對(duì)數(shù)恒等式:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(3)常用對(duì)數(shù)與自然對(duì)數(shù):常用對(duì)數(shù):SKIPIF1<0,即SKIPIF1<0;自然對(duì)數(shù):SKIPIF1<0,即SKIPIF1<0(其中SKIPIF1<0…).(4)對(duì)數(shù)的運(yùn)算性質(zhì)如果SKIPIF1<0,那么①加法:SKIPIF1<0②減法:SKIPIF1<0③數(shù)乘:SKIPIF1<0④SKIPIF1<0⑤SKIPIF1<0⑥換底公式:SKIPIF1<0二、對(duì)數(shù)函數(shù)及其性質(zhì)(5)對(duì)數(shù)函數(shù)函數(shù)名稱對(duì)數(shù)函數(shù)定義函數(shù)SKIPIF1<0且SKIPIF1<0叫做對(duì)數(shù)函數(shù)圖象SKIPIF1<0SKIPIF1<0001001定義域SKIPIF1<0值域SKIPIF1<0過定點(diǎn)圖象過定點(diǎn)SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.奇偶性非奇非偶單調(diào)性在SKIPIF1<0上是增函數(shù)在SKIPIF1<0上是減函數(shù)函數(shù)值的變化情況SKIPIF1<0SKIPIF1<0SKIPIF1<0變化對(duì) 圖象的影響在第一象限內(nèi),SKIPIF1<0越大圖象越靠低,越靠近x軸在第四象限內(nèi),SKIPIF1<0越大圖象越靠高,越靠近y軸在第一象限內(nèi),SKIPIF1<0越小圖象越靠低,越靠近x軸在第四象限內(nèi),SKIPIF1<0越小圖象越靠高,越靠近y軸(6)反函數(shù)的概念設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,從式子SKIPIF1<0中解出SKIPIF1<0,得式子SKIPIF1<0.如果對(duì)于SKIPIF1<0在SKIPIF1<0中的任何一個(gè)值,通過式子SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中都有唯一確定的值和它對(duì)應(yīng),那么式子SKIPIF1<0表示SKIPIF1<0是SKIPIF1<0的函數(shù),函數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的反函數(shù),記作SKIPIF1<0,習(xí)慣上改寫成SKIPIF1<0.(7)反函數(shù)的求法①確定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式SKIPIF1<0中反解出SKIPIF1<0;③將SKIPIF1<0改寫成SKIPIF1<0,并注明反函數(shù)的定義域.(8)反函數(shù)的性質(zhì)①原函數(shù)SKIPIF1<0與反函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱.②函數(shù)SKIPIF1<0的定義域、值域分別是其反函數(shù)SKIPIF1<0的值域、定義域.③若SKIPIF1<0在原函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0在反函數(shù)SKIPIF1<0的圖象上.④一般地,函數(shù)SKIPIF1<0要有反函數(shù)則它必須為單調(diào)函數(shù).【考點(diǎn)鏈接】考點(diǎn)一、對(duì)數(shù)的運(yùn)算例1、(1)計(jì)算:SKIPIF1<0,SKIPIF1<0.(2)求x的值:①SKIPIF1<0;②SKIPIF1<0.(3)求底數(shù):①已知SKIPIF1<0,求SKIPIF1<0的值 ②SKIPIF1<0,求SKIPIF1<0的值 (4)已知SKIPIF1<0,求SKIPIF1<0的值例2、計(jì)算:(1)lg14SKIPIF1<021gSKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.練習(xí)1、計(jì)算:(1)SKIPIF1<0;(2)SKIPIF1<0.練習(xí)2、已知SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0(用a,b表示).練習(xí)3、設(shè)SKIPIF1<0,求證:SKIPIF1<0.練習(xí)4、若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.考點(diǎn)二、函數(shù)的定義域例3、求下列函數(shù)的定義域:SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.練習(xí)5、求下列函數(shù)的定義域:(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0(5)SKIPIF1<0考點(diǎn)三、函數(shù)的值域例4、求下列函數(shù)的值域:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).練習(xí)6、求下列函數(shù)的值域(1)SKIPIF1<0(2)SKIPIF1<0考點(diǎn)五、對(duì)數(shù)函數(shù)的單調(diào)性例5、比較下列各組數(shù)中兩個(gè)值的大?。海?)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.例6、已知SKIPIF1<0,比較SKIPIF1<0,SKIPIF1<0的大小。例7、求函數(shù)SKIPIF1<0的單調(diào)區(qū)間。練習(xí)7、比較下列比較下列各組數(shù)中兩個(gè)值的大?。海?)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(4)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.練習(xí)8、若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),SKIPIF1<0的取值范圍??键c(diǎn)六、函數(shù)的奇偶性例8、判斷函數(shù)SKIPIF1<0的奇偶性。練習(xí)9、(1)函數(shù)SKIPIF1<0的奇偶性是。(2)函數(shù)SKIPIF1<0的奇偶性為【課后練習(xí)】選擇題:1、已知SKIPIF1<0,那么SKIPIF1<0用SKIPIF1<0表示是()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<02、SKIPIF1<0,則SKIPIF1<0的值為()A、SKIPIF1<0B、4C、1D、4或13、若SKIPIF1<0,則SKIPIF1<0的值為()A1B2C3D44、如果方程SKIPIF1<0的兩根是SKIPIF1<0,則SKIPIF1<0的值是()A、SKIPIF1<0B、SKIPIF1<0C、35D、SKIPIF1<05、已知SKIPIF1<0,那么SKIPIF1<0等于()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<06、函數(shù)SKIPIF1<0的圖像關(guān)于()A、SKIPIF1<0軸對(duì)稱B、SKIPIF1<0軸對(duì)稱C、原點(diǎn)對(duì)稱D、直線SKIPIF1<0對(duì)稱7、函數(shù)SKIPIF1<0的定義域是()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<08、函數(shù)SKIPIF1<0的值域是()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<09、若SKIPIF1<0,那么SKIPIF1<0滿足的條件是()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<010、SKIPIF1<0,則SKIPIF1<0的取值范圍是()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<011、下列函數(shù)中,在SKIPIF1<0上為增函數(shù)的是()A、SKIPIF1<0B、SKIPIF1<0C、SKIPIF1<0D、SKIPIF1<012、已知SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0,則SKIPIF1<0是()A、在SKIPIF1<0上是增加的B、在SKIPIF1<0上是減少的C、在SKIPIF1<0上是增加的D、在SKIPIF1<0上是減少的填空題13、若SKIPIF1<0。14、函數(shù)SKIPIF1<0的定義域是。15、SKIPIF1<0。16、函數(shù)SKIPIF1<0是(奇、偶)函數(shù)。三、解答題:(本題共3小題,共36分,解答應(yīng)寫出文字說明,證明過程或演算步驟.)17、已知函數(shù)SKIPIF1<0,判斷SKIPIF1<0的奇偶性和單調(diào)性。18、已知函數(shù)SKIPIF1<0,(1)求SKIPIF1<0的定義域;(2)判斷SKIPIF1<0的奇偶性。19、設(shè)函數(shù)SKIPIF1<0且SKIPIF1<0求a,b的值;當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0最大值20、已知函數(shù)SKIPIF1<0在定義域SKIPIF1<0上是減函數(shù),且SKIPIF1<0求a的取值范圍;解不等式:SKIPIF1<0冪函數(shù)總復(fù)習(xí)【知識(shí)點(diǎn)回顧】(1)冪函數(shù)的定義一般地,函數(shù)SKIPIF1<0叫做冪函數(shù),其中SKIPIF1<0為自變量,SKIPIF1<0是常數(shù).(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)①圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象.冪函數(shù)是偶函數(shù)時(shí),圖象分布在第一、二象限(圖象關(guān)于SKIPIF1<0軸對(duì)稱);是奇函數(shù)時(shí),圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對(duì)稱);是非奇非偶函數(shù)時(shí),圖象只分布在第一象限.②過定點(diǎn):所有的冪函數(shù)在SKIPIF1<0都有定義,并且圖象都通過點(diǎn)SKIPIF1<0.③單調(diào)性:如果SKIPIF1<0,則冪函數(shù)的圖象過原點(diǎn),并且在SKIPIF1<0上為增函數(shù).如果SKIPIF1<0,則冪函數(shù)的圖象在SKIPIF1<0上為減函數(shù),在第一象限內(nèi),圖象無限接近SKIPIF1<0軸與SKIPIF1<0軸.④奇偶性:當(dāng)SKIPIF1<0為奇數(shù)時(shí),冪函數(shù)為奇函數(shù),當(dāng)SKIPIF1<0為偶數(shù)時(shí),冪函數(shù)為偶函數(shù).當(dāng)SKIPIF1<0(其中SKIPIF1<0互質(zhì),SKIPIF1<0和SKIPIF1<0),若SKIPIF1<0為奇數(shù)SKIPIF1<0為奇數(shù)時(shí),則SKIPIF1<0是奇函數(shù),若SKIPIF1<0為奇數(shù)SKIPIF1<0為偶數(shù)時(shí),則SKIPIF1<0是偶函數(shù),若SKIPIF1<0為偶數(shù)SKIPIF1<0為奇數(shù)時(shí),則SKIPIF1<0是非奇非偶函數(shù).⑤圖象特征:冪函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度科研事業(yè)單位合同管理規(guī)范化及風(fēng)險(xiǎn)防控建議合同
- 2025年回遷房買賣合同糾紛調(diào)解與仲裁協(xié)議
- 2025年度個(gè)人消費(fèi)信貸合同范本
- 2025年度公司法人車輛租賃合同示范文本
- 2025年度新媒體內(nèi)容創(chuàng)作者攝影剪輯聘用合同范本
- 2025年度區(qū)塊鏈技術(shù)應(yīng)用技術(shù)服務(wù)合同知識(shí)產(chǎn)權(quán)保護(hù)條款
- 2025年度建筑工程施工勞務(wù)分包合同(含節(jié)能減排措施)
- 2025年度建筑節(jié)能改造項(xiàng)目木工勞務(wù)合同范本
- 2025年度家具設(shè)計(jì)與制造項(xiàng)目合同模板
- 2025年公路貨運(yùn)車輛運(yùn)輸安全責(zé)任合同參考文本
- 2023電化學(xué)儲(chǔ)能電站消防安全標(biāo)準(zhǔn)鉛炭電池(鉛酸電池)
- 青島版五四制四年級(jí)數(shù)學(xué)上冊(cè)豎式計(jì)算100道
- DB11T 1322.94-2024安全生產(chǎn)等級(jí)評(píng)定技術(shù)規(guī)范 第94部分:救助管理機(jī)構(gòu)
- 2024都市人群科學(xué)護(hù)肝白皮書-byhealthx庶正康訊x天貓-202409
- 2024至2030年中國天津市酒店行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及投資方向研究報(bào)告
- 新教材-外研版高中英語選擇性必修第二冊(cè)全冊(cè)教學(xué)課件(按單元排序-)
- 甘肅省臨夏州2023-2024學(xué)年高二下學(xué)期期末質(zhì)量檢測(cè)語文試卷(無答案)
- 貨場(chǎng)煤泥合同模板
- 腸道健康管理課件
- 房產(chǎn)中介公司薪酬制度
- 家具生產(chǎn)車間規(guī)章制度
評(píng)論
0/150
提交評(píng)論