版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題21平面解析幾何(選填壓軸題)目錄TOC\o"1-1"\h\u①離心率問(wèn)題 1②范圍(最值)問(wèn)題 11③軌跡問(wèn)題 21④相切問(wèn)題 29⑤新定義新文化題 35①離心率問(wèn)題1.(2023春·陜西西安·高二西安市鐵一中學(xué)??计谀┰O(shè)橢圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0為橢圓SKIPIF1<0上的任意一點(diǎn),SKIPIF1<0的最小值取值范圍為SKIPIF1<0,其中SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意可知,SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即橢圓SKIPIF1<0的離心率為SKIPIF1<0.故選:D.2.(2023秋·天津北辰·高二??计谀┤綦p曲線SKIPIF1<0的一條漸近線被圓SKIPIF1<0所截得的弦長(zhǎng)為SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,直線SKIPIF1<0被圓SKIPIF1<0所得截得的弦長(zhǎng)為SKIPIF1<0,
則圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,由點(diǎn)到直線的距離公式可得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,因此,雙曲線SKIPIF1<0的離心率為SKIPIF1<0.故選:B.3.(2023春·內(nèi)蒙古赤峰·高二赤峰二中??茧A段練習(xí))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線分別交雙曲線的左、右兩支于A,B兩點(diǎn),且SKIPIF1<0,若SKIPIF1<0,則雙曲線離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】A【詳解】令SKIPIF1<0,則SKIPIF1<0,
在SKIPIF1<0中,SKIPIF1<0,由余弦定理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,于是SKIPIF1<0,在SKIPIF1<0中,令雙曲線半焦距為SKIPIF1<0,由余弦定理得:SKIPIF1<0,解得SKIPIF1<0,所以雙曲線離心率SKIPIF1<0.故選:A4.(2023·江西南昌·南昌市八一中學(xué)??既#┮阎p曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,若在SKIPIF1<0上存在點(diǎn)SKIPIF1<0不是頂點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0與y軸交于Q點(diǎn),連接SKIPIF1<0,則SKIPIF1<0,
因?yàn)镾KIPIF1<0,故P點(diǎn)在雙曲線右支上,且SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0,且三角形內(nèi)角和為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的離心率的取值范圍為SKIPIF1<0,故選:A5.(2023·福建福州·福州四中??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0為左焦點(diǎn),SKIPIF1<0分別為左?左頂點(diǎn),SKIPIF1<0為SKIPIF1<0右支上的點(diǎn),且SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)).若直線SKIPIF1<0與以線段SKIPIF1<0為直徑的圓相交,則SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)雙曲線的右焦點(diǎn)為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,
SKIPIF1<0為SKIPIF1<0右支上的點(diǎn),取SKIPIF1<0的中點(diǎn)為B,連接SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,又直線SKIPIF1<0與以線段SKIPIF1<0為直徑的圓相交,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則需使SKIPIF1<0,解得SKIPIF1<0,即雙曲線離心率的范圍為SKIPIF1<0,即SKIPIF1<0的離心率的取值范圍為SKIPIF1<0,故選:D6.(2023春·湖南長(zhǎng)沙·高二長(zhǎng)沙市明德中學(xué)??茧A段練習(xí))雙曲線SKIPIF1<0和橢圓SKIPIF1<0有共同的焦點(diǎn),則橢圓的離心率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】對(duì)于雙曲線SKIPIF1<0,設(shè)右焦點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,對(duì)于橢圓SKIPIF1<0,設(shè)右焦點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,因?yàn)橛泄餐慕裹c(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,所以橢圓的離心率是SKIPIF1<0,故選:D.7.(2023秋·江蘇南通·高三統(tǒng)考階段練習(xí))過(guò)點(diǎn)SKIPIF1<0能作雙曲線SKIPIF1<0的兩條切線,則該雙曲線離心率SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】當(dāng)過(guò)點(diǎn)SKIPIF1<0的直線的斜率不存在時(shí),直線的方程為SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,故直線SKIPIF1<0與雙曲線SKIPIF1<0相交,不合乎題意;當(dāng)過(guò)點(diǎn)SKIPIF1<0的直線的斜率存在時(shí),設(shè)直線方程為SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,因?yàn)檫^(guò)點(diǎn)SKIPIF1<0能作雙曲線SKIPIF1<0的兩條切線,則SKIPIF1<0,可得SKIPIF1<0,由題意可知,關(guān)于SKIPIF1<0的二次方程SKIPIF1<0有兩個(gè)不等的實(shí)數(shù)根,所以,SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0,因此,關(guān)于SKIPIF1<0的方程SKIPIF1<0沒(méi)有SKIPIF1<0的實(shí)根,所以,SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上所述,該雙曲線的離心率的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.8.(2023秋·湖北·高三校聯(lián)考階段練習(xí))已知雙曲線C:SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)A為雙曲線C右支上一點(diǎn),直線SKIPIF1<0交雙曲線的左支于點(diǎn)B,若SKIPIF1<0,且原點(diǎn)O到直線SKIPIF1<0的距離為1,則C的離心率為.【答案】SKIPIF1<0【詳解】SKIPIF1<0點(diǎn)A為雙曲線C右支上一點(diǎn),SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0點(diǎn)B為雙曲線C左支上一點(diǎn),SKIPIF1<0SKIPIF1<0即SKIPIF1<0,過(guò)SKIPIF1<0作直線SKIPIF1<0的垂線,垂足分別為SKIPIF1<0,
則SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0的中點(diǎn),可得SKIPIF1<0,在直角三角形SKIPIF1<0中SKIPIF1<0,在直角三角形SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,平方可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0C的離心率為SKIPIF1<0.故答案為:SKIPIF1<0.9.(2023·全國(guó)·高二課堂例題)若橢圓SKIPIF1<0上存在一點(diǎn)M,使得SKIPIF1<0(SKIPIF1<0,SKIPIF1<0分別為橢圓的左、右焦點(diǎn)),則橢圓的離心率e的取值范圍為.【答案】SKIPIF1<0【詳解】方法一:設(shè)點(diǎn)M的坐標(biāo)是SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.又點(diǎn)M在橢圓上,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故橢圓的離心率e的取值范圍是SKIPIF1<0.方法二:設(shè)點(diǎn)M的坐標(biāo)是SKIPIF1<0,由方法一可得SKIPIF1<0消去SKIPIF1<0,得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,由②得SKIPIF1<0,此式恒成立.由①得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0.綜上所述,橢圓的離心率e的取值范圍是SKIPIF1<0.方法三:設(shè)橢圓的一個(gè)短軸端點(diǎn)為P,∵橢圓上存在一點(diǎn)M,使SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,(SKIPIF1<0最大時(shí),M為短軸端點(diǎn))∴SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故橢圓的離心率e的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.10.(2023春·江蘇宿遷·高二??茧A段練習(xí))已知橢圓SKIPIF1<0,SKIPIF1<0是長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,連接SKIPIF1<0,交橢圓于點(diǎn)SKIPIF1<0,且SKIPIF1<0為常數(shù),則橢圓離心率為.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由題意設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0為常數(shù),所以SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以離心率SKIPIF1<0,故答案為:SKIPIF1<0
11.(2023·江西贛州·統(tǒng)考模擬預(yù)測(cè))已知雙曲線C:SKIPIF1<0,過(guò)其右焦點(diǎn)F作直線SKIPIF1<0交雙曲線C的漸近線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,點(diǎn)B在第四象限.設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),若SKIPIF1<0的面積為SKIPIF1<0面積的2倍,且SKIPIF1<0,則雙曲線C的離心率為.【答案】SKIPIF1<0【詳解】雙曲線的焦點(diǎn)為SKIPIF1<0,漸近線方程為SKIPIF1<0,依題意可知直線SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,即SKIPIF1<0,同理可求得SKIPIF1<0,由于SKIPIF1<0的面積為SKIPIF1<0面積的2倍,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0①,由于SKIPIF1<0,所以①可化為SKIPIF1<0,兩邊除以SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<012.(2023·福建寧德·??寄M預(yù)測(cè))已知橢圓SKIPIF1<0的右焦點(diǎn)是SKIPIF1<0,直線SKIPIF1<0交橢圓于SKIPIF1<0兩點(diǎn)﹐直線SKIPIF1<0與橢圓的另一個(gè)交點(diǎn)為SKIPIF1<0,若SKIPIF1<0,則橢圓的離心率為.【答案】SKIPIF1<0/SKIPIF1<0【詳解】設(shè)橢圓的左焦點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
由直線SKIPIF1<0交橢圓于SKIPIF1<0兩點(diǎn)﹐及SKIPIF1<0,結(jié)合橢圓的對(duì)稱性可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均為直角三角形,所以四邊形SKIPIF1<0為矩形,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以在直角SKIPIF1<0中SKIPIF1<0,即SKIPIF1<0①,在直角SKIPIF1<0中SKIPIF1<0,即SKIPIF1<0②,由②解得SKIPIF1<0,將SKIPIF1<0代入①得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0②范圍(最值)問(wèn)題1.(2023·江蘇徐州·??寄M預(yù)測(cè))已知橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0上的兩點(diǎn),且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由橢圓SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,
所以SKIPIF1<0,即SKIPIF1<0,所以右焦點(diǎn)SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)直線SKIPIF1<0的斜率不存在時(shí),設(shè)直線SKIPIF1<0的方程SKIPIF1<0,代入橢圓的方程可得SKIPIF1<0,解得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,這時(shí)SKIPIF1<0的中點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,且SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,這時(shí)SKIPIF1<0的最小值為SKIPIF1<0;當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,整理可得:SKIPIF1<0,△SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,符合△SKIPIF1<0,可得SKIPIF1<0的軌跡方程為SKIPIF1<0,整理可得:SKIPIF1<0,兩式平方相加可得:SKIPIF1<0,即SKIPIF1<0的軌跡方程為:SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上的橢圓,所以SKIPIF1<0,當(dāng)SKIPIF1<0為該橢圓的右頂點(diǎn)時(shí),取等號(hào),綜上所述:SKIPIF1<0的最小值為SKIPIF1<0,故選:D.2.(2023·重慶·統(tǒng)考模擬預(yù)測(cè))設(shè)a,b為正數(shù),若直線SKIPIF1<0被圓SKIPIF1<0截得弦長(zhǎng)為4,則SKIPIF1<0的最小值為(
)A.6 B.7 C.8 D.9【答案】D【詳解】由SKIPIF1<0可得SKIPIF1<0,故圓的直徑是4,所以直線過(guò)圓心SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故選:D.3.(2023·山東·山東師范大學(xué)附中??寄M預(yù)測(cè))在平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SKIPIF1<0,直線SKIPIF1<0.設(shè)圓SKIPIF1<0的半徑為1,圓心在l上.若圓C上存在點(diǎn)M,使SKIPIF1<0,則圓心C的橫坐標(biāo)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】圓心C的橫坐標(biāo)為a,則圓心C的坐標(biāo)為SKIPIF1<0,則圓SKIPIF1<0的方程SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,整理得SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0有公共點(diǎn),則SKIPIF1<0,即SKIPIF1<0,解之得SKIPIF1<0.故選:D4.(2023·北京·??寄M預(yù)測(cè))已知橢圓SKIPIF1<0.過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn).將SKIPIF1<0表示為SKIPIF1<0的函數(shù),則SKIPIF1<0的最大值是(
)A.1 B.2 C.3 D.4【答案】B【詳解】由題意知,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),切線SKIPIF1<0的方程為SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),同理可得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),設(shè)切線方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0兩點(diǎn)兩點(diǎn)坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又由SKIPIF1<0于圓SKIPIF1<0相切,得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,由于當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0的最大值為2.故選:B.5.(2023·四川·校聯(lián)考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,離心率為2,焦點(diǎn)到漸近線的距離為SKIPIF1<0.過(guò)SKIPIF1<0作直線SKIPIF1<0交雙曲線SKIPIF1<0的右支于SKIPIF1<0兩點(diǎn),若SKIPIF1<0分別為SKIPIF1<0與SKIPIF1<0的內(nèi)心,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意,在SKIPIF1<0中,根據(jù)焦點(diǎn)到漸近線的距可得SKIPIF1<0,離心率為2,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0∴雙曲線的方程為SKIPIF1<0.
記SKIPIF1<0的內(nèi)切圓在邊SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0橫坐標(biāo)相等SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,記SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0,得SKIPIF1<0,同理內(nèi)心SKIPIF1<0的橫坐標(biāo)也為SKIPIF1<0,故SKIPIF1<0SKIPIF1<0軸.設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0(Q為坐標(biāo)原點(diǎn)),在SKIPIF1<0中,SKIPIF1<0,由于直線SKIPIF1<0與SKIPIF1<0的右支交于兩點(diǎn),且SKIPIF1<0的一條漸近線的斜率為SKIPIF1<0,傾斜角為SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0的范圍是SKIPIF1<0.故選:D.6.(2023·云南昆明·昆明一中校考模擬預(yù)測(cè))已知直線l是圓C:SKIPIF1<0的切線,且l與橢圓E:SKIPIF1<0交于A,B兩點(diǎn),則|AB|的最大值為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】B【詳解】∵直線l是圓C:SKIPIF1<0的切線,∴圓心O到直線l的距離為1,設(shè)SKIPIF1<0,①當(dāng)AB⊥x軸時(shí),SKIPIF1<0②當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為y=kx+m.由已知SKIPIF1<0得SKIPIF1<0.把y=kx+m代入橢圓方程,整理得SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0原式SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立.綜上所述SKIPIF1<0.故選:B.7.(2023·江蘇蘇州·校聯(lián)考三模)已知雙曲線SKIPIF1<0,過(guò)其右焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),已知SKIPIF1<0,若這樣的直線SKIPIF1<0有SKIPIF1<0條,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】記SKIPIF1<0,若直線SKIPIF1<0與SKIPIF1<0軸重合,此時(shí),SKIPIF1<0;若直線SKIPIF1<0軸時(shí),將SKIPIF1<0代入雙曲線方程可得SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,此時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以,雙曲線SKIPIF1<0的實(shí)軸長(zhǎng)和通徑長(zhǎng)不可能同時(shí)為SKIPIF1<0;當(dāng)直線SKIPIF1<0與SKIPIF1<0軸不重合時(shí),記SKIPIF1<0,則點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,其中SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,由題意可得SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,所以,關(guān)于SKIPIF1<0的方程SKIPIF1<0由四個(gè)不等的實(shí)數(shù)解.當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,可得SKIPIF1<0,整理可得SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,整理可得SKIPIF1<0,可得SKIPIF1<0.綜上所述,SKIPIF1<0.故答案為:SKIPIF1<0.8.(2023·吉林長(zhǎng)春·統(tǒng)考模擬預(yù)測(cè))已知圓SKIPIF1<0的圓心在拋物線SKIPIF1<0上運(yùn)動(dòng),且圓SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,圓SKIPIF1<0被SKIPIF1<0軸所截得的弦為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,故圓SKIPIF1<0的方程SKIPIF1<0,令SKIPIF1<0有SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又由余弦定理可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),原式有最大值SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),原式有最小值為SKIPIF1<0,從而SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<09.(2023·黑龍江大慶·統(tǒng)考三模)古希臘數(shù)學(xué)家阿波羅尼奧斯與歐幾里得、阿基米德齊名,他的著作《圓錐曲線論》是古代數(shù)學(xué)光輝的科學(xué)成果.他發(fā)現(xiàn)“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的點(diǎn)的軌跡是圓”,人們將這樣的圓稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.在平面直角坐標(biāo)系中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,Q為拋物線SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)Q在直線SKIPIF1<0上的射影為H,M為圓SKIPIF1<0上的動(dòng)點(diǎn),若點(diǎn)P的軌跡是到A,B兩點(diǎn)的距離之比為SKIPIF1<0的阿氏圓,則SKIPIF1<0的最小值為.【答案】3【詳解】設(shè)SKIPIF1<0,由題意SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,因?yàn)閳ASKIPIF1<0可以看作把圓SKIPIF1<0向左平移SKIPIF1<0個(gè)單位得到的,那么SKIPIF1<0點(diǎn)平移后變?yōu)镾KIPIF1<0,SKIPIF1<0點(diǎn)平移后變?yōu)镾KIPIF1<0,所以根據(jù)阿氏圓的定義有SKIPIF1<0,所以SKIPIF1<0,又由拋物線定義有SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共線,且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0之間時(shí)取等號(hào),故SKIPIF1<0的最小值為3.故答案為:3.10.(2023·四川成都·四川省成都市玉林中學(xué)校考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0且垂直于x軸的直線與該雙曲線的左支交于A,B兩點(diǎn),SKIPIF1<0,SKIPIF1<0分別交y軸于P,Q兩點(diǎn),若SKIPIF1<0的周長(zhǎng)為16,則SKIPIF1<0的最大值為.【答案】4【詳解】∵SKIPIF1<0軸且過(guò)SKIPIF1<0,則AB為雙曲線的通徑,由SKIPIF1<0,代入雙曲線可得SKIPIF1<0,故SKIPIF1<0.SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中位線,故SKIPIF1<0,又SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)為SKIPIF1<0①,∵SKIPIF1<0②,故由①②可得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0.故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào).故答案為:411.(2023·四川綿陽(yáng)·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0為拋物線:SKIPIF1<0的焦點(diǎn),過(guò)直線SKIPIF1<0上任一點(diǎn)SKIPIF1<0向拋物線引切線,切點(diǎn)分別為A,SKIPIF1<0,若點(diǎn)SKIPIF1<0在直線SKIPIF1<0上的射影為SKIPIF1<0,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0在SKIPIF1<0軸上方,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以切線SKIPIF1<0的方程為SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0,同理可得SKIPIF1<0.因此直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在以SKIPIF1<0為直徑的圓上,該圓圓心SKIPIF1<0,半徑為1,由已知SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,SKIPIF1<0時(shí),直線SKIPIF1<0方程為SKIPIF1<0,此時(shí),SKIPIF1<0與SKIPIF1<0軸垂直,SKIPIF1<0點(diǎn)與SKIPIF1<0點(diǎn)重合,即SKIPIF1<0,SKIPIF1<0點(diǎn)不可能與SKIPIF1<0點(diǎn)重合,最大值取不到.所以SKIPIF1<0的范圍是SKIPIF1<0.故答案為:SKIPIF1<0.③軌跡問(wèn)題1.(2023秋·廣東陽(yáng)江·高三統(tǒng)考開(kāi)學(xué)考試)已知圓SKIPIF1<0與圓SKIPIF1<0交點(diǎn)的軌跡為SKIPIF1<0,過(guò)平面內(nèi)的點(diǎn)SKIPIF1<0作軌跡SKIPIF1<0的兩條互相垂直的切線,則點(diǎn)SKIPIF1<0的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】圓SKIPIF1<0圓心SKIPIF1<0,圓SKIPIF1<0圓心SKIPIF1<0,設(shè)兩圓交點(diǎn)為SKIPIF1<0,則由題意知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又由于SKIPIF1<0,所以由橢圓定義知,交點(diǎn)SKIPIF1<0是以SKIPIF1<0、SKIPIF1<0為焦點(diǎn)的橢圓,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以軌跡SKIPIF1<0的方程為SKIPIF1<0,
設(shè)點(diǎn)SKIPIF1<0,當(dāng)切線斜率存在且不為SKIPIF1<0時(shí),設(shè)切線方程為:SKIPIF1<0,聯(lián)立SKIPIF1<0,消SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,則由根與系數(shù)關(guān)系知SKIPIF1<0,即SKIPIF1<0.
當(dāng)切線斜率不存在或?yàn)镾KIPIF1<0時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足方程SKIPIF1<0,故所求軌跡方程為SKIPIF1<0.故選:A.2.(2023·貴州黔西·校考一模)在正方體SKIPIF1<0中,點(diǎn)SKIPIF1<0為平面SKIPIF1<0內(nèi)的一動(dòng)點(diǎn),SKIPIF1<0是點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離,SKIPIF1<0是點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,且SKIPIF1<0(SKIPIF1<0為常數(shù)),則點(diǎn)SKIPIF1<0的軌跡不可能是(
)A.圓 B.橢圓 C.雙曲線 D.拋物線【答案】A【詳解】由條件作出正方體SKIPIF1<0,并以SKIPIF1<0為原點(diǎn),直線SKIPIF1<0、SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0和SKIPIF1<0軸建立空間直角坐標(biāo)系,如圖所示:設(shè)正方體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0(SKIPIF1<0),點(diǎn)SKIPIF1<0,所以得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0①(SKIPIF1<0),當(dāng)SKIPIF1<0時(shí),①式化得:SKIPIF1<0,此時(shí),點(diǎn)SKIPIF1<0的軌跡是拋物線;當(dāng)SKIPIF1<0時(shí),①式化得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0②,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則②式,是雙曲線的方程,即點(diǎn)SKIPIF1<0的軌跡為雙曲線;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則②式,是橢圓的方程,即點(diǎn)SKIPIF1<0的軌跡為橢圓;故選:A.3.(2023·全國(guó)·高二專題練習(xí))已知?jiǎng)狱c(diǎn)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為大于零的常數(shù))﹐則動(dòng)點(diǎn)SKIPIF1<0的軌跡是(
)A.線段 B.圓 C.橢圓 D.直線【答案】C【詳解】SKIPIF1<0的幾何意義為點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0間的距離,同理SKIPIF1<0的幾何意義為點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0間的距離,且SKIPIF1<0又由SKIPIF1<0為大于零的常數(shù),可知SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等,故SKIPIF1<0,即動(dòng)點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0與到點(diǎn)SKIPIF1<0的距離之和為定值,且大于SKIPIF1<0,所以動(dòng)點(diǎn)SKIPIF1<0的軌跡為橢圓,故選:C.4.(2023春·江蘇南京·高二南京航空航天大學(xué)附屬高級(jí)中學(xué)??计谥校┮阎獔ASKIPIF1<0的圓心為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0交圓SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線,交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡為(
)A.拋物線 B.雙曲線 C.橢圓 D.雙曲線一支【答案】B【詳解】SKIPIF1<0,即圓SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0平行與SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故點(diǎn)SKIPIF1<0的軌跡為雙曲線.故選:B5.(2023·高二課時(shí)練習(xí))已知SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)P滿足SKIPIF1<0(a為常數(shù)),則下列說(shuō)法中錯(cuò)誤的是(
)A.SKIPIF1<0時(shí),點(diǎn)P的軌跡是y軸 B.SKIPIF1<0時(shí),點(diǎn)P的軌跡是一條直線C.SKIPIF1<0或SKIPIF1<0時(shí),點(diǎn)P的軌跡不存在 D.SKIPIF1<0時(shí),點(diǎn)P的軌跡是雙曲線【答案】B【詳解】對(duì)選項(xiàng)A:SKIPIF1<0時(shí),S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀杏樹(shù)種植合同(2篇)
- 誠(chéng)信課件 小學(xué)
- 古詩(shī)詞誦讀《涉江采芙蓉》-高一語(yǔ)文上學(xué)期同步備課拓展(統(tǒng)編版必修上冊(cè))
- 太陽(yáng)課件人教版
- 繩子莫泊桑課件
- 2.13有理數(shù)的混合運(yùn)算課件教學(xué)
- 西京學(xué)院《復(fù)變函數(shù)與積分變換》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《大數(shù)據(jù)開(kāi)發(fā)技術(shù)》2022-2023學(xué)年期末試卷
- 西華師范大學(xué)《中小學(xué)課堂樂(lè)器》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《學(xué)科課程與教學(xué)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 制衣廠轉(zhuǎn)讓合同
- 新華保險(xiǎn)的培訓(xùn)心得
- 莖的形態(tài)結(jié)構(gòu)與功能
- 第一講 中國(guó)傳統(tǒng)藝術(shù)之書(shū)法
- 2023版?zhèn)€人征信模板簡(jiǎn)版(可編輯-帶水?。?/a>
- 2023年四川省成都市青羊區(qū)一診數(shù)學(xué)試題(學(xué)生版、解析版)
- 泵與泵站(水20)學(xué)習(xí)通課后章節(jié)答案期末考試題庫(kù)2023年
- 固定資產(chǎn)閑置處置方案
- 新媒體時(shí)代下的輿情引導(dǎo)
- 個(gè)人課題結(jié)題總結(jié)報(bào)告PPT模板下載
- 直流電動(dòng)機(jī)工作原理 名師獲獎(jiǎng)
評(píng)論
0/150
提交評(píng)論