福建省泉州市泉州實驗中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第1頁
福建省泉州市泉州實驗中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第2頁
福建省泉州市泉州實驗中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第3頁
福建省泉州市泉州實驗中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第4頁
福建省泉州市泉州實驗中學(xué)2024年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省泉州市泉州實驗中學(xué)2024年中考數(shù)學(xué)四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°2.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,63.如圖所示的幾何體,它的左視圖是()A. B. C. D.4.若點A(1+m,1﹣n)與點B(﹣3,2)關(guān)于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.15.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標(biāo)為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數(shù)根;其中正確的是()A.①③ B.②③ C.③④ D.②④6.如圖,數(shù)軸上的四個點A,B,C,D對應(yīng)的數(shù)為整數(shù),且AB=BC=CD=1,若|a|+|b|=2,則原點的位置可能是()A.A或B B.B或C C.C或D D.D或A7.如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則的值是()A.1 B. C. D.8.如圖,在矩形ABCD中,AB=3,AD=4,點E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣9.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.10.在﹣3,﹣1,0,1四個數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設(shè)可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.12.計算tan260°﹣2sin30°﹣cos45°的結(jié)果為_____.13.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.14.化簡的結(jié)果等于__.15.如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.16.據(jù)媒體報道,我國研制的“察打一體”無人機(jī)的速度極快,經(jīng)測試最高速度可達(dá)204000米/分,將204000這個數(shù)用科學(xué)記數(shù)法表示為_____.17.如圖,在平面直角坐標(biāo)系中,已知點A(﹣4,0)、B(0,3),對△AOB連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標(biāo)是_____,第(2018)個三角形的直角頂點的坐標(biāo)是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC內(nèi)接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當(dāng)AB=8,CE=2時,求⊙O直徑的長.19.(5分)如圖,點D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.20.(8分)如圖,某同學(xué)在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達(dá)D處,在D處測得點A的仰角為45°,求建筑物AB的高度.21.(10分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo).22.(10分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.23.(12分)如圖是一副撲克牌中的四張牌,將它們正面向下冼均勻,從中任意抽取兩張牌,用畫樹狀圖(或列表)的方法,求抽出的兩張牌牌面上的數(shù)字之和都是偶數(shù)的概率.24.(14分)已知:在△ABC中,AC=BC,D,E,F(xiàn)分別是AB,AC,CB的中點.求證:四邊形DECF是菱形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問題的關(guān)鍵.2、A【解析】

根據(jù)眾數(shù)、中位數(shù)的定義分別進(jìn)行解答即可.【詳解】由表知數(shù)據(jù)5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因為共有20個數(shù)據(jù),所以中位數(shù)為第10、11個數(shù)據(jù)的平均數(shù),即中位數(shù)為=6,故選A.【點睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、A【解析】

從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,

故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)關(guān)于y軸的對稱點的坐標(biāo)特點:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,據(jù)此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關(guān)于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點睛】本題考查了關(guān)于y軸對稱的點,熟練掌握關(guān)于y軸對稱的兩點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變是解題的關(guān)鍵.5、D【解析】

①錯誤.由題意a>1.b>1,c<1,abc<1;

②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當(dāng)ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;

③錯誤.拋物線與x軸的另一個交點是(1,1);

④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.【詳解】解:∵拋物線開口向上,∴a>1,

∵拋物線交y軸于負(fù)半軸,∴c<1,

∵對稱軸在y軸左邊,∴-<1,

∴b>1,

∴abc<1,故①錯誤.

∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,

當(dāng)ax2+bx+c<mx+n時,-3<x<-1;

即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,

拋物線與x軸的另一個交點是(1,1),故③錯誤,

∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,

∴方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.

故選:D.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)與不等式,二次函數(shù)與一元二次方程等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用數(shù)形結(jié)合的思想解決問題.6、B【解析】

根據(jù)AB=BC=CD=1,|a|+|b|=2,分四種情況進(jìn)行討論判斷即可.【詳解】∵AB=BC=CD=1,∴當(dāng)點A為原點時,|a|+|b|>2,不合題意;當(dāng)點B為原點時,|a|+|b|=2,符合題意;當(dāng)點C為原點時,|a|+|b|=2,符合題意;當(dāng)點D為原點時,|a|+|b|>2,不合題意;故選:B.【點睛】此題主要考查了數(shù)軸以及絕對值,解題時注意:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值.7、C【解析】由題意知:AB=BE=6,BD=AD﹣AB=2(圖2中),AD=AB﹣BD=4(圖3中);∵CE∥AB,∴△ECF∽△ADF,得,即DF=2CF,所以CF:CD=1:3,故選C.【點睛】本題考查了矩形的性質(zhì),折疊問題,相似三角形的判定與性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.8、D【解析】

首先根據(jù)矩形的性質(zhì),可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進(jìn)而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點睛】本題考查了矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用.9、D【解析】解:當(dāng)點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當(dāng)點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點Q在BC上這種情況.10、A【解析】

因為正數(shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因為正數(shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數(shù)中比-2小的數(shù)是-3,故選A.【點睛】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機(jī)事件的概率.12、1【解析】

分別算三角函數(shù),再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數(shù)值,較基礎(chǔ).13、【解析】

過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.14、.【解析】

先通分變?yōu)橥帜阜质剑缓蟾鶕?jù)分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.15、4m【解析】

設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵M(jìn)N∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.16、2.04×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值≥1時,n是非負(fù)數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:204000用科學(xué)記數(shù)法表示2.04×1.故答案為2.04×1.點睛:本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.17、(16,)(8068,)【解析】

利用勾股定理列式求出AB的長,再根據(jù)圖形寫出第(5)個三角形的直角頂點的坐標(biāo)即可;觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),用2018除以3,根據(jù)商和余數(shù)的情況確定出第(2018)個三角形的直角頂點到原點O的距離,然后寫出坐標(biāo)即可.【詳解】∵點A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個三角形的直角頂點的坐標(biāo)是(4,);∵5÷3=1余2,∴第(5)個三角形的直角頂點的坐標(biāo)是(16,),∵2018÷3=672余2,∴第(2018)個三角形是第672組的第二個直角三角形,其直角頂點與第672組的第二個直角三角形頂點重合,∴第(2018)個三角形的直角頂點的坐標(biāo)是(8068,).故答案為:(16,);(8068,)【點睛】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),解題的關(guān)鍵是根據(jù)題意找出每3個三角形為一個循環(huán)組依次循環(huán).三、解答題(共7小題,滿分69分)18、(1)見解析;(2)⊙O直徑的長是4.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結(jié)論;

(2)先判斷出AC⊥BD,進(jìn)而求出BC=AB=8,進(jìn)而判斷出△BDC∽△BED,求出BD,即可得出結(jié)論.【詳解】證明:(1)連接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直徑,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切線;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直徑,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴=,∴BD2=BC?BE=8×10=80,∴BD=4.即⊙O直徑的長是4.【點睛】此題主要考查圓周角定理,垂徑定理,相似三角形的判定和性質(zhì),切線的判定和性質(zhì),第二問中求出BC=8是解本題的關(guān)鍵.19、見解析【解析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.

證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.20、(30+30)米.【解析】

解:設(shè)建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米21、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點坐標(biāo),然后通過證明△ABC是直角三角形來推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.(2)通過求出A,B,C三點坐標(biāo),利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標(biāo).(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標(biāo)為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設(shè)直線l∥BC,則該直線的解析式可表示為:y=x+b,當(dāng)直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論