安徽省合肥市第一六八中學2024屆高考仿真卷數(shù)學試卷含解析_第1頁
安徽省合肥市第一六八中學2024屆高考仿真卷數(shù)學試卷含解析_第2頁
安徽省合肥市第一六八中學2024屆高考仿真卷數(shù)學試卷含解析_第3頁
安徽省合肥市第一六八中學2024屆高考仿真卷數(shù)學試卷含解析_第4頁
安徽省合肥市第一六八中學2024屆高考仿真卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

安徽省合肥市第一六八中學2024屆高考仿真卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.22.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.3.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.84.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.6.趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.7.設函數(shù)的導函數(shù),且滿足,若在中,,則()A. B. C. D.8.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.129.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關系為()A. B.C. D.10.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.11.已知實數(shù)集,集合,集合,則()A. B. C. D.12.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線上一點,是圓關于直線對稱的曲線上任意一點,則的最小值為________.14.已知,如果函數(shù)有三個零點,則實數(shù)的取值范圍是____________15.函數(shù)的圖象向右平移個單位后,與函數(shù)的圖象重合,則_____.16.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標準差為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.18.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.19.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求的值;(2)若,求的面積.20.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.21.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.22.(10分)已知數(shù)列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數(shù)列的通項公式;(2)設數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.2、A【解析】

先由題和拋物線的性質(zhì)求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關鍵,屬于中檔題.3、A【解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.4、A【解析】

根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.5、B【解析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).6、D【解析】

設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題.7、D【解析】

根據(jù)的結(jié)構(gòu)形式,設,求導,則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.8、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B9、C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.10、B【解析】

根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質(zhì)的應用,題目比較綜合.11、A【解析】

可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.12、D【解析】

根據(jù)題意畫出幾何關系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意求出圓的對稱圓的圓心坐標,求出對稱圓的圓坐標到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設圓心關于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設,則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關動點距離的最小值問題,涉及到的知識點有點關于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.14、【解析】

首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當時,,當時,,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條件的應用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.15、【解析】

根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導公式求得滿足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個單位后,得到的函數(shù)解析式為,因為函數(shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因為,所以.故答案為:【點睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.16、【解析】

先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標準差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標準差為1.故答案為:1.【點睛】本題考查一組數(shù)據(jù)據(jù)的標準差的求法,考查平均數(shù)、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應用,屬于基礎題.18、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19、(1);(2).【解析】

(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應用.20、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結(jié)合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關系(互為相反數(shù)),然后設直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點的坐標,注意到直線與的斜率之間的關系得到點的坐標,最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設直線代入橢圓方程,化簡得,其一解為,另一解為,可求,用代入得,,為定值.考點:1.橢圓的方程;2.直線與橢圓的位置關系;3.兩點間連線的斜率21、(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論