版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天津市河西區(qū)實(shí)驗(yàn)中學(xué)2024屆高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古代中的“禮、樂(lè)、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種2.已知集合,則()A. B. C. D.3.若直線與曲線相切,則()A.3 B. C.2 D.4.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)5.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.6.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.7.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.8.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.9.已知函數(shù)滿足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或10.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.211.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.612.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長(zhǎng)為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,若,,則________.14.已知隨機(jī)變量服從正態(tài)分布,,則__________.15.已知等比數(shù)列的各項(xiàng)均為正數(shù),,則的值為_(kāi)_______.16.已知雙曲線的一條漸近線為,且經(jīng)過(guò)拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大小.18.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個(gè)特征向量.19.(12分)已知橢圓,過(guò)的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).20.(12分)己知,,.(1)求證:;(2)若,求證:.21.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程及曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.22.(10分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來(lái)的100年,是中國(guó)青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國(guó)、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來(lái)之際,學(xué)校組織“五四運(yùn)動(dòng)100周年”知識(shí)競(jìng)賽,競(jìng)賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對(duì)每道A類題的概率都是,答對(duì)每道B類題的概率都是,且各題答對(duì)與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.2、C【解析】
解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點(diǎn)睛】本題考查了解不等式與交集的運(yùn)算問(wèn)題,是基礎(chǔ)題.3、A【解析】
設(shè)切點(diǎn)為,對(duì)求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點(diǎn)斜式化簡(jiǎn)得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點(diǎn)為,∵,∴由①得,代入②得,則,,故選A.【點(diǎn)睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,直線方程的點(diǎn)斜式,屬于簡(jiǎn)單題目.4、D【解析】
將復(fù)數(shù)整理為的形式,分別判斷四個(gè)選項(xiàng)即可得到結(jié)果.【詳解】的虛部為,錯(cuò)誤;,錯(cuò)誤;,錯(cuò)誤;,為純虛數(shù),正確本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、實(shí)部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識(shí),屬于基礎(chǔ)題.5、D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.6、D【解析】
利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計(jì)算可得輸出為25時(shí)的值,進(jìn)而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時(shí)輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項(xiàng)可知C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡(jiǎn)單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.8、A【解析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見(jiàn)幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.9、C【解析】
簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.10、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過(guò)點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.11、C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點(diǎn)睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.12、D【解析】
如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過(guò)作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、127【解析】
已知條件化簡(jiǎn)可化為,等式兩邊同時(shí)除以,則有,通過(guò)求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點(diǎn)睛】本題考查通過(guò)遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學(xué)生分析問(wèn)題的能力,難度較易.14、0.22.【解析】
正態(tài)曲線關(guān)于x=μ對(duì)稱,根據(jù)對(duì)稱性以及概率和為1求解即可?!驹斀狻俊军c(diǎn)睛】本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,是一個(gè)基礎(chǔ)題.15、【解析】
運(yùn)用等比數(shù)列的通項(xiàng)公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過(guò)拋物線焦點(diǎn),能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過(guò)拋物線焦點(diǎn),∴,∴雙曲線方程為,故答案為:.【點(diǎn)睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡(jiǎn)單性質(zhì)的合理運(yùn)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長(zhǎng)為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長(zhǎng)為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問(wèn)題,屬于中檔題.18、特征值為1,特征向量為.【解析】
設(shè)出矩陣M結(jié)合矩陣運(yùn)算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個(gè)特征向量.【詳解】設(shè)矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個(gè)特征向量為.【點(diǎn)睛】本題主要考查矩陣的運(yùn)算及特征量的求解,矩陣運(yùn)算的關(guān)鍵是明確其運(yùn)算規(guī)則,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).19、(1)或;(2)見(jiàn)解析【解析】
(1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡(jiǎn)可得結(jié)果.【詳解】(1)由條件可知直線的斜率存在,則可設(shè)直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗(yàn)證)(2)設(shè),則,直線的方程為.由得,由,解得,,當(dāng)時(shí),,故直線恒過(guò)定點(diǎn).【點(diǎn)睛】此題考查的是直線與橢圓的位置關(guān)系中的過(guò)定點(diǎn)問(wèn)題,計(jì)算過(guò)程較復(fù)雜,屬于難題.20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故.(2)由基本不等式得,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.將上面四式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版專業(yè)長(zhǎng)期借款協(xié)議模板大全版B版
- 職業(yè)學(xué)院關(guān)于雙師素質(zhì)教師隊(duì)伍建設(shè)實(shí)施辦法
- 2024年離崗創(chuàng)業(yè)事業(yè)單位人員合同3篇
- 2024年版標(biāo)準(zhǔn)協(xié)議格式樣本指導(dǎo)書版B版
- 2024年離婚證明英文版
- 2024版學(xué)校教學(xué)樓建設(shè)合同服務(wù)內(nèi)容擴(kuò)展
- 2024年藝術(shù)品銷售外包服務(wù)合同范本3篇
- 2024陶瓷制品線上銷售與推廣合同
- 2024年稻米訂購(gòu)協(xié)議3篇
- EPC工程總承包項(xiàng)目運(yùn)作模式研究
- 統(tǒng)編版一年級(jí)語(yǔ)文上冊(cè) 第5單元教材解讀 PPT
- CSCEC8XN-SP-安全總監(jiān)項(xiàng)目實(shí)操手冊(cè)
- 加減乘除混合運(yùn)算600題直接打印
- 口腔衛(wèi)生保健知識(shí)講座班會(huì)全文PPT
- 成都市產(chǎn)業(yè)園區(qū)物業(yè)服務(wù)等級(jí)劃分二級(jí)標(biāo)準(zhǔn)整理版
- 最新監(jiān)督學(xué)模擬試卷及答案解析
- ASCO7000系列GROUP5控制盤使用手冊(cè)
- 污水處理廠關(guān)鍵部位施工監(jiān)理控制要點(diǎn)
- 財(cái)政投資評(píng)審中心工作流程
- 男性公民兵役登記表.docx
- 10個(gè)地基基礎(chǔ)工程質(zhì)量通病及防治措施
評(píng)論
0/150
提交評(píng)論