2023-2024學年陜西省咸陽市旬邑中學高三沖刺模擬數(shù)學試卷含解析_第1頁
2023-2024學年陜西省咸陽市旬邑中學高三沖刺模擬數(shù)學試卷含解析_第2頁
2023-2024學年陜西省咸陽市旬邑中學高三沖刺模擬數(shù)學試卷含解析_第3頁
2023-2024學年陜西省咸陽市旬邑中學高三沖刺模擬數(shù)學試卷含解析_第4頁
2023-2024學年陜西省咸陽市旬邑中學高三沖刺模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年陜西省咸陽市旬邑中學高三沖刺模擬數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.2.已知函數(shù),則不等式的解集為()A. B. C. D.3.函數(shù)的圖象大致是()A. B.C. D.4.已知集合,,,則()A. B. C. D.5.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.6.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.7.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1288.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.199.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知,其中是虛數(shù)單位,則對應的點的坐標為()A. B. C. D.11.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.12.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.6二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.14.執(zhí)行如圖所示的程序框圖,則輸出的結果是______.15.已知向量,,,若,則______.16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關,合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關,質(zhì)量把關程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關,再由另外2位行家進行第二次質(zhì)量把關,若第二次質(zhì)量把關這2位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關這2位行家中有1位或2位認為質(zhì)量不過關,則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關,則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關中一件手工藝品被1位行家認為質(zhì)量不過關的概率為,且各手工藝品質(zhì)量是否過關相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.19.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.20.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?21.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.22.(10分)已知函數(shù).(Ⅰ)當時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.2、D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應用,意在考查學生對這些知識的理解掌握水平.3、B【解析】

根據(jù)函數(shù)表達式,把分母設為新函數(shù),首先計算函數(shù)定義域,然后求導,根據(jù)導函數(shù)的正負判斷函數(shù)單調(diào)性,對應函數(shù)圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.4、D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.5、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.6、A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.7、C【解析】

根據(jù)給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、B【解析】

計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關計算,意在考查學生的計算能力和對于數(shù)列公式方法的綜合應用.9、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.10、C【解析】

利用復數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)相等的條件,是基礎題.11、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.12、A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.14、1【解析】

該程序的功能為利用循環(huán)結構計算并輸出變量的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運行,可得:,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,此時滿足條件,退出循環(huán),輸出的值為1.故答案為:1.【點睛】本題考查程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,屬于基礎題.15、-1【解析】

由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標運算可得結論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數(shù)量積的關系是解題關鍵.16、【解析】

根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)①2②期望值為X900600300100P【解析】

(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.18、(1)(2)證明見解析【解析】

(1)在上有解,,設,求導根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當時,單調(diào)遞增;當時,單調(diào)遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當時,單調(diào)遞減;當時,單調(diào)遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學生的綜合應用能力和轉化能力.19、(1);.;(2)【解析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設,則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【點睛】本題考查通過遞推關系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.20、(1)6種;(2);(3).【解析】

(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經(jīng)過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條.(2)小明途中恰好經(jīng)過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經(jīng)過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數(shù)為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【點睛】本題考查概率在實際生活中的綜合應用問題,考查學生邏輯推理與運算能力,是一道有一定難度的題.21、(1)時,在上單調(diào)遞增,時,在上遞減,在上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論