福建省安溪縣二級(jí)達(dá)標(biāo)高中校際教學(xué)聯(lián)盟2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
福建省安溪縣二級(jí)達(dá)標(biāo)高中校際教學(xué)聯(lián)盟2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
福建省安溪縣二級(jí)達(dá)標(biāo)高中校際教學(xué)聯(lián)盟2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
福建省安溪縣二級(jí)達(dá)標(biāo)高中校際教學(xué)聯(lián)盟2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
福建省安溪縣二級(jí)達(dá)標(biāo)高中校際教學(xué)聯(lián)盟2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省安溪縣二級(jí)達(dá)標(biāo)高中校際教學(xué)聯(lián)盟2024年高三六校第一次聯(lián)考數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿(mǎn)足(是虛數(shù)單位),則=()A. B. C. D.2.已知等差數(shù)列的前13項(xiàng)和為52,則()A.256 B.-256 C.32 D.-323.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.4.若雙曲線(xiàn):的一條漸近線(xiàn)方程為,則()A. B. C. D.5.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.6.已知雙曲線(xiàn)(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線(xiàn)的一條漸近線(xiàn)交于,兩點(diǎn),若,則的離心率為()A. B. C. D.7.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.8.曲線(xiàn)上任意一點(diǎn)處的切線(xiàn)斜率的最小值為()A.3 B.2 C. D.19.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.10.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.11.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.12.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項(xiàng)和,已知,,則_______.14.四面體中,底面,,,則四面體的外接球的表面積為_(kāi)_____15.“”是“”的__________條件.(填寫(xiě)“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)16.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》對(duì)立體幾何有深入的研究,從其中一些數(shù)學(xué)用語(yǔ)可見(jiàn),譬如“憋臑”意指四個(gè)面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個(gè)小正方形的邊長(zhǎng)為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線(xiàn)與平面所成的角.18.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點(diǎn).(1)求證:平面;(2)若,點(diǎn)是線(xiàn)段上一點(diǎn),且,求直線(xiàn)與平面所成角的正弦值.19.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.20.(12分)為貫徹十九大報(bào)告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿(mǎn)足人民日益增長(zhǎng)的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過(guò)抽樣檢測(cè)植物高度的方法來(lái)監(jiān)測(cè)培育的某種植物的生長(zhǎng)情況.現(xiàn)分別從、、三塊試驗(yàn)田中各隨機(jī)抽取株植物測(cè)量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長(zhǎng)情況相互獨(dú)立.從、、三組各隨機(jī)選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗(yàn)田中分別再隨機(jī)抽取株該種植物,它們的高度依次是、、(單位:厘米).這個(gè)新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大?。ńY(jié)論不要求證明)21.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.22.(10分)管道清潔棒是通過(guò)在管道內(nèi)釋放清潔劑來(lái)清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個(gè)如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長(zhǎng)度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請(qǐng)用角表示清潔棒的長(zhǎng);(2)若想讓清潔棒通過(guò)該彎頭,清潔下一段圓管,求能通過(guò)該彎頭的清潔棒的最大長(zhǎng)度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】解:由,得,.故選.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、A【解析】

利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.3、B【解析】

奇函數(shù)滿(mǎn)足定義域關(guān)于原點(diǎn)對(duì)稱(chēng)且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且,滿(mǎn)足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱(chēng),屬于簡(jiǎn)單題目.4、A【解析】

根據(jù)雙曲線(xiàn)的漸近線(xiàn)列方程,解方程求得的值.【詳解】由題意知雙曲線(xiàn)的漸近線(xiàn)方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線(xiàn)的漸近線(xiàn),屬于基礎(chǔ)題.5、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).6、A【解析】

求出雙曲線(xiàn)的一條漸近線(xiàn)方程,利用圓與雙曲線(xiàn)的一條漸近線(xiàn)交于兩點(diǎn),且,則可根據(jù)圓心到漸近線(xiàn)距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線(xiàn)的一條漸近線(xiàn)與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)椋越獾茫蔬xA.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對(duì)于離心率求解問(wèn)題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個(gè)思考方向,一方面,可以從幾何的角度,結(jié)合曲線(xiàn)的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線(xiàn)方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.7、A【解析】

根據(jù)實(shí)數(shù)滿(mǎn)足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.8、A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線(xiàn)斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線(xiàn)斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線(xiàn)斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.9、A【解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).10、B【解析】

由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.11、D【解析】

利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.12、B【解析】

分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類(lèi)討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)答排列組合的計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)等比數(shù)列的公比為,將已知條件等式轉(zhuǎn)化為關(guān)系式,求解即可.【詳解】設(shè)等比數(shù)列的公比為,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的基本量運(yùn)算,屬于基礎(chǔ)題.14、【解析】

由題意畫(huà)出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線(xiàn)長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過(guò)一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線(xiàn)長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.15、充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.16、【解析】三視圖還原如下圖:,由于每個(gè)面是直角,顯然外接球球心O在A(yíng)C的中點(diǎn).所以,,填?!军c(diǎn)睛】三視圖還原,當(dāng)出現(xiàn)三個(gè)尖點(diǎn)在一個(gè)位置時(shí),我們常用“揪尖法”。外接球球心到各個(gè)頂點(diǎn)的距離相等,而直角三角形斜邊上的中點(diǎn)到各頂點(diǎn)的距離相等,所以本題的球心為AC中點(diǎn)。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(Ⅰ)取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線(xiàn)面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線(xiàn)與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn).理由如下:取的中點(diǎn),連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線(xiàn)與平面所成的角,易知在中,,從而,所以直線(xiàn)與平面所成的角為.【點(diǎn)睛】本題考查了立體幾何中的面面垂直的判定和直線(xiàn)與平面所成角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問(wèn)題和解答問(wèn)題的能力.18、(1)證明見(jiàn)解析;(2)【解析】

(1)的中點(diǎn),連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點(diǎn)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,分別是,的中點(diǎn),,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點(diǎn),以,,為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,0,,,2,,是的中點(diǎn),是的三等分點(diǎn),,1,,,,,,,,,0,,,2,,設(shè)平面的法向量為,,,則,即,令可得,,,,,直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線(xiàn)面平行的判定,空間向量與直線(xiàn)與平面所成角的計(jì)算,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)直接代入再由誘導(dǎo)公式計(jì)算可得;(Ⅱ)先得到,再根據(jù)利用兩角差的余弦公式計(jì)算可得.【詳解】解:(Ⅰ);(Ⅱ)因?yàn)樗?,由得,又因?yàn)?,故,所以,所?【點(diǎn)睛】本題考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.20、(1);(2);(3).【解析】

設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設(shè)事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設(shè)事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設(shè)事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設(shè)事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點(diǎn)睛】本題考查概率的求法,考查互斥事件加法公式、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中等題.21、(1);(2)見(jiàn)解析【解析】

將函數(shù)解析式化簡(jiǎn)即可求出函數(shù)的最小正周期根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出函數(shù)在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當(dāng),即時(shí),;當(dāng),即時(shí),.綜上,得時(shí),取得最小值為0;當(dāng)時(shí),取得最大值為.【點(diǎn)睛】本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論