版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省滕州市第一中學(xué)2023-2024學(xué)年高三考前熱身數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.32.設(shè),是空間兩條不同的直線,,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④3.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.84.已知命題,,則是()A., B.,.C., D.,.5.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.12 B.10 C.8 D.6.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問(wèn)各得金幾何?”則在該問(wèn)題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤7.已知函數(shù),則的最小值為()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.已知函數(shù)的最小正周期為的圖象向左平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.10.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.11.中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬(wàn)公里,其中高鐵營(yíng)業(yè)里程2.9萬(wàn)公里,超過(guò)世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬(wàn)公里)的折線圖,以下結(jié)論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著B(niǎo).從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列12.橢圓是日常生活中常見(jiàn)的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過(guò)程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.14.若函數(shù)為偶函數(shù),則________.15.已知,滿足,則的展開(kāi)式中的系數(shù)為_(kāi)_____.16.已知等差數(shù)列的前項(xiàng)和為,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.18.(12分)函數(shù),且恒成立.(1)求實(shí)數(shù)的集合;(2)當(dāng)時(shí),判斷圖象與圖象的交點(diǎn)個(gè)數(shù),并證明.(參考數(shù)據(jù):)19.(12分)已知數(shù)列中,a1=1,其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.20.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.22.(10分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí),取最大即可求得結(jié)果.【詳解】因?yàn)椋?,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問(wèn)題,難度較易.2、C【解析】
根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯(cuò)②:因?yàn)椋?,所以或,因?yàn)?,所以,故②?duì)③:或,故③錯(cuò)④:如圖因?yàn)?,,在?nèi)過(guò)點(diǎn)作直線的垂線,則直線,又因?yàn)?,設(shè)經(jīng)過(guò)和相交的平面與交于直線,則又,所以因?yàn)?,,所以,所以,故④?duì).故選:C【點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.3、B【解析】
求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過(guò)點(diǎn)求出即可.【詳解】因?yàn)?,所以,故,解得,又切線過(guò)點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.4、B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.5、B【解析】
由等比數(shù)列的性質(zhì)求得,再由對(duì)數(shù)運(yùn)算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.6、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C7、C【解析】
利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.8、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.9、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項(xiàng).【詳解】因?yàn)楹瘮?shù)的最小正周期是,所以,即,所以,的圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對(duì)稱,所以,又,所以,所以,所以,因?yàn)榈倪f增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點(diǎn)睛】本題主要考查正弦型函數(shù)的周期性,對(duì)稱性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時(shí),注意自變量的系數(shù),屬于中檔題.10、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.11、D【解析】
由折線圖逐項(xiàng)分析即可求解【詳解】選項(xiàng),顯然正確;對(duì)于,,選項(xiàng)正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯(cuò).故選:D【點(diǎn)睛】本題考查統(tǒng)計(jì)的知識(shí),考查數(shù)據(jù)處理能力和應(yīng)用意識(shí),是基礎(chǔ)題12、C【解析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、231,321,301,1【解析】
分個(gè)位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.14、【解析】
二次函數(shù)為偶函數(shù)說(shuō)明一次項(xiàng)系數(shù)為0,求得參數(shù),將代入表達(dá)式即可求解【詳解】由為偶函數(shù),知其一次項(xiàng)的系數(shù)為0,所以,,所以,故答案為:-5【點(diǎn)睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題15、1【解析】
根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識(shí)求得系數(shù).【詳解】由題意,.∴的展開(kāi)式中的系數(shù)為.故答案為:1.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵.16、【解析】
根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項(xiàng)和公式求得的值.【詳解】因?yàn)闉榈炔顢?shù)列,所以,解得,所以.故答案為:【點(diǎn)睛】本小題考查等差數(shù)列的性質(zhì),前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,應(yīng)用意識(shí).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.試題解析:(1)由題意知當(dāng)時(shí),,當(dāng)時(shí),,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點(diǎn)1、待定系數(shù)法求等差數(shù)列的通項(xiàng)公式;2、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.【易錯(cuò)點(diǎn)晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項(xiàng)公式、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和,屬于難題.“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.18、(1);(2)2個(gè),證明見(jiàn)解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點(diǎn)個(gè)數(shù)轉(zhuǎn)化為方程實(shí)數(shù)解的個(gè)數(shù)問(wèn)題,然后構(gòu)造函數(shù),再利用導(dǎo)數(shù)討論此函數(shù)零點(diǎn)的個(gè)數(shù).【詳解】(1)的定義域?yàn)?,因?yàn)椋?°當(dāng)時(shí),在上單調(diào)遞減,時(shí),使得,與條件矛盾;2°當(dāng)時(shí),由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時(shí),,要使恒成立,故.(2)原問(wèn)題轉(zhuǎn)化為方程實(shí)根個(gè)數(shù)問(wèn)題,當(dāng)時(shí),圖象與圖象有且僅有2個(gè)交點(diǎn),理由如下:由,即,令,因?yàn)椋允堑囊桓?;?°當(dāng)時(shí),,所以在上單調(diào)遞減,,即在上無(wú)實(shí)根;2°當(dāng)時(shí),,則在上單調(diào)遞遞增,又,所以在上有唯一實(shí)根,且滿足,①當(dāng)時(shí),在上單調(diào)遞減,此時(shí)在上無(wú)實(shí)根;②當(dāng)時(shí),在上單調(diào)遞增,,故在上有唯一實(shí)根.3°當(dāng)時(shí),由(1)知,在上單調(diào)遞增,所以,故,所以在上無(wú)實(shí)根.綜合1°,2°,3°,故有兩個(gè)實(shí)根,即圖象與圖象有且僅有2個(gè)交點(diǎn).【點(diǎn)睛】此題考查不等式恒成立問(wèn)題、函數(shù)與方程的轉(zhuǎn)化思想,考查導(dǎo)數(shù)的運(yùn)用,屬于較難題.19、(1)(2)【解析】
(1)項(xiàng)和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【點(diǎn)睛】本題考查了數(shù)列綜合問(wèn)題,考查了項(xiàng)和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識(shí)點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)通過(guò)證明,即可證明線面平行;(2)通過(guò)證明平面,即可證明線線垂直.【詳解】(1)連,因?yàn)闉槠叫兴倪呅?,為其中心,所以,為中點(diǎn),又因?yàn)闉橹悬c(diǎn),所以,又平面,平面所以,平面;(2)作于因?yàn)槠矫嫫矫?,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以?【點(diǎn)睛】此題考查證明線面平行和線面垂直,通過(guò)線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.21、(1);(2)【解析】
(1)求出,即可求出切線的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿足,,求出,當(dāng)時(shí)求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時(shí)切點(diǎn)坐標(biāo)為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時(shí)時(shí),,時(shí),,故存在使得且當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),取得極小值,也是最小值,故由于,所以,.【點(diǎn)睛】本題考
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省撫順市新?lián)釁^(qū)2024-2025學(xué)年九年級(jí)上學(xué)期第一次教學(xué)質(zhì)量檢測(cè)化學(xué)試卷含答案
- 湖北省隨州市廣水市第二高級(jí)中學(xué)2024-2025學(xué)年高三上學(xué)期10月月考數(shù)學(xué)試題(含答案)
- 2024年度上海市高校教師資格證之高等教育法規(guī)題庫(kù)檢測(cè)試卷A卷附答案
- 贛南師范大學(xué)《計(jì)量地理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《裝飾繪畫》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《小學(xué)生心理健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《創(chuàng)新創(chuàng)業(yè)教育專題》2021-2022學(xué)年第一學(xué)期期末試卷
- 粵教版四年級(jí)下冊(cè)全書科學(xué)教案
- 無(wú)錫市2024-2025學(xué)年三年級(jí)上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷二(有答案)
- 福建師范大學(xué)《化工原理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 期中測(cè)試卷(1-5單元)(試題)-2024-2025學(xué)年人教版數(shù)學(xué)三年級(jí)上冊(cè)
- 化學(xué)丨四川省南充市高2025屆高考適應(yīng)性考試(南充一診)高三10月聯(lián)考化學(xué)試卷及答案
- 君主立憲制的英國(guó) 統(tǒng)編版九年級(jí)歷史上冊(cè)
- 2024年供應(yīng)鏈管理師技能競(jìng)賽理論考試題庫(kù)(含答案)
- 2024-2030年中國(guó)富含蛋白質(zhì)的營(yíng)養(yǎng)棒行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 前程無(wú)憂行測(cè)題庫(kù)
- 2024年公需課新質(zhì)生產(chǎn)力與高質(zhì)量發(fā)展題庫(kù)及答案
- T-CPA 006-2024 造紙用濕強(qiáng)劑 聚酰胺環(huán)氧氯丙烷PAE
- 新質(zhì)生產(chǎn)力-講解課件
- 人工智能智慧樹(shù)知到答案章節(jié)測(cè)試2023年復(fù)旦大學(xué)
- 心血管介入考試器械植入模擬試題卷
評(píng)論
0/150
提交評(píng)論