版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
全國(guó)名校2024屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切2.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.3.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.4.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.35.已知復(fù)數(shù),則()A. B. C. D.6.設(shè)集合,,則集合A. B. C. D.7.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.78.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.49.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()10.已知圓關(guān)于雙曲線的一條漸近線對(duì)稱,則雙曲線的離心率為()A. B. C. D.11.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.12.已知,則的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.14.已知函數(shù)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________.15.的角所對(duì)的邊分別為,且,,若,則的值為__________.16.已知平面向量,的夾角為,且,則=____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率是,動(dòng)點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)軸時(shí),.(1)求橢圓的方程;(2)延長(zhǎng)分別交橢圓于點(diǎn)(不重合).設(shè),求的最小值.18.(12分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動(dòng)點(diǎn),周長(zhǎng)的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過(guò),交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.19.(12分)已知直線過(guò)橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過(guò)原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.20.(12分)在銳角三角形中,角的對(duì)邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.21.(12分)已知.(1)已知關(guān)于的不等式有實(shí)數(shù)解,求的取值范圍;(2)求不等式的解集.22.(10分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,,是線段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.2、C【解析】
先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.3、A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題.4、A【解析】
由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.5、B【解析】
利用復(fù)數(shù)除法、加法運(yùn)算,化簡(jiǎn)求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.6、B【解析】
先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對(duì)于集合A,,解得或,故.對(duì)于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對(duì)數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對(duì)于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過(guò)因式分解,求得對(duì)應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來(lái)求得一元二次不等式的解集.7、B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.8、A【解析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.9、D【解析】
由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.10、C【解析】
將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,所以.所以.故選:C【點(diǎn)睛】本題主要考查圓的方程及對(duì)稱性,還有雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.11、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).12、B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.14、【解析】
當(dāng)時(shí),轉(zhuǎn)化條件得有唯一實(shí)數(shù)根,令,通過(guò)求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時(shí),,故不是函數(shù)的零點(diǎn);當(dāng)時(shí),即,令,,,當(dāng)時(shí),;當(dāng)時(shí),,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實(shí)數(shù)根,則.故答案為:.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.15、【解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因?yàn)?,故,因?yàn)?,所?由正弦定理可得三角形外接圓的半徑滿足,所以即.因?yàn)?,解得或(舍?故答案為:.【點(diǎn)睛】本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對(duì)所得的方程組變形整合后整體求解,本題屬于中檔題.16、1【解析】
根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡(jiǎn)并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點(diǎn)睛】本題考查了平面向量模的求法及簡(jiǎn)單應(yīng)用,平面向量數(shù)量積的定義及運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)題意直接計(jì)算得到,,得到橢圓方程.(2)不妨設(shè),且,設(shè),代入數(shù)據(jù)化簡(jiǎn)得到,故,得到答案.【詳解】(1),所以,,化簡(jiǎn)得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設(shè),且,設(shè),所以由,得,所以,由,得,代入,化簡(jiǎn)得:,由于,所以,同理可得,所以,所以當(dāng)時(shí),最小為【點(diǎn)睛】本題考查了橢圓方程,橢圓中的向量運(yùn)算和最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】
(Ⅰ)由橢圓的定義可得,周長(zhǎng)取最大值時(shí),線段過(guò)點(diǎn),可求出,從而求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達(dá)定理和弦長(zhǎng)公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點(diǎn)即得結(jié)論.【詳解】(Ⅰ)設(shè)的周長(zhǎng)為,則,當(dāng)且僅當(dāng)線段過(guò)點(diǎn)時(shí)“”成立.,,又,,橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點(diǎn)矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時(shí).直線,聯(lián)立直線與直線的方程得,即點(diǎn)在定直線.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的邏輯推理能力和運(yùn)算能力,屬于難題.19、(1)(2)【解析】
(1)由直線可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線,點(diǎn)到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長(zhǎng)公式求得,利用點(diǎn)到直線距離求得,根據(jù)直線l與線段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理?yè)Q元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點(diǎn),所以橢圓右焦點(diǎn)的坐標(biāo)為,故,因?yàn)榫€段AB的中點(diǎn)是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因?yàn)榈街本€的距離分別是,由于直線l與線段AB(不含端點(diǎn))相交,所以,即,所以,四邊形的面積,令,,則,所以,當(dāng),即時(shí),,因此四邊形面積的最大值為.【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查橢圓中的四邊形面積問(wèn)題,考查直線與橢圓的位置關(guān)系的應(yīng)用,考查運(yùn)算能力.20、(1);(2).【解析】
(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡(jiǎn)可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡(jiǎn)得,因?yàn)?故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因?yàn)闉殇J角,故可得,由正弦定理可得,又的面積為可得,解得.【點(diǎn)睛】本題主要考查了等差等比中項(xiàng)的運(yùn)用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時(shí)也考查了正弦定理與面積公式在解三角形中的運(yùn)用,屬于中檔題.21、(1);(2).【解析】
(1)依據(jù)能成立問(wèn)題知,,然后利用絕對(duì)值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點(diǎn)分段法解含有兩個(gè)絕對(duì)值的不等式即可。【詳解】因?yàn)椴坏仁接袑?shí)數(shù)解,所以因?yàn)椋怨?。①?dāng)時(shí),,所以,故②當(dāng)時(shí),,所以,故③當(dāng)時(shí),,所以,故綜上,原不等式的解集為?!军c(diǎn)睛】本題主要考查不等式有解問(wèn)題的解法以及含有兩個(gè)絕對(duì)值的不等式問(wèn)題的解法,意在考查零點(diǎn)分段法、絕對(duì)值三角不等式和轉(zhuǎn)化思想、分類討論思想的應(yīng)用。22、(Ⅰ)證明見(jiàn)詳解;(Ⅱ).【解析】
(Ⅰ)取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點(diǎn),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省濟(jì)寧市第七中學(xué)2024--2025學(xué)年七年級(jí)上學(xué)期第一次月考數(shù)學(xué)試題(無(wú)答案)
- 2024年度云南省高校教師資格證之高等教育心理學(xué)全真模擬考試試卷A卷含答案
- 贛南師范大學(xué)《教育政策法規(guī)與教師職業(yè)道德》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年激光合作目標(biāo)項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 阜陽(yáng)師范大學(xué)《形式與政策三》2022-2023學(xué)年第一學(xué)期期末試卷
- 南京市2024-2025學(xué)年五年級(jí)上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷一(有答案)
- 福建師范大學(xué)《資本論選讀》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年二級(jí)建造師實(shí)務(wù)集訓(xùn)模擬題一
- 財(cái)務(wù)管理-物業(yè)公司清算報(bào)告模板
- 福建師范大學(xué)《景觀設(shè)計(jì)三》2022-2023學(xué)年第一學(xué)期期末試卷
- 卡通學(xué)生班干部競(jìng)選自我介紹
- 江蘇民歌課件
- DB11T 1448-2017 城市軌道交通工程資料管理規(guī)程
- 骨質(zhì)疏松癥-PPT課件
- 施耐德APC1-20K不間斷電源內(nèi)部培訓(xùn)(ppt可編輯修改)課件
- 八年級(jí)環(huán)境教育教案全冊(cè)各課
- 藍(lán)色炫酷科技風(fēng)新品上市發(fā)布會(huì)PPT模板課件
- 小小建筑師公開課-PPT課件
- 類風(fēng)濕性關(guān)節(jié)炎護(hù)理查房ppt
- 空氣質(zhì)量遠(yuǎn)程監(jiān)測(cè)系統(tǒng)設(shè)計(jì)畢業(yè)設(shè)計(jì)(論文)
- 2020新外研版新教材高二英語(yǔ)選擇性必修四課文及翻譯(中英文Word)
評(píng)論
0/150
提交評(píng)論