版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.關(guān)于函數(shù),下列說(shuō)法正確的是()A.函數(shù)的定義域?yàn)锽.函數(shù)一個(gè)遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線(xiàn)對(duì)稱(chēng)D.將函數(shù)圖像向左平移個(gè)單位可得函數(shù)的圖像2.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.3.若集合,,則A. B. C. D.4.當(dāng)輸入的實(shí)數(shù)時(shí),執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.5.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.6.設(shè),,則()A. B.C. D.7.已知焦點(diǎn)為的拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于點(diǎn),點(diǎn)在拋物線(xiàn)上,則當(dāng)取得最大值時(shí),直線(xiàn)的方程為()A.或 B.或 C.或 D.8.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.若均為任意實(shí)數(shù),且,則的最小值為()A. B. C. D.10.已知拋物線(xiàn)和點(diǎn),直線(xiàn)與拋物線(xiàn)交于不同兩點(diǎn),,直線(xiàn)與拋物線(xiàn)交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線(xiàn)準(zhǔn)線(xiàn)相離;②直線(xiàn)與直線(xiàn)的斜率乘積為;③設(shè)過(guò)點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③11.費(fèi)馬素?cái)?shù)是法國(guó)大數(shù)學(xué)家費(fèi)馬命名的,形如的素?cái)?shù)(如:)為費(fèi)馬索數(shù),在不超過(guò)30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是()A. B. C. D.12.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線(xiàn)與所成角的余弦值為A.0 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量服從正態(tài)分布,,則__________.14.直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),若,則弦的中點(diǎn)到直線(xiàn)的距離等于________.15.已知向量,滿(mǎn)足,,,則向量在的夾角為_(kāi)_____.16.設(shè)直線(xiàn)過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn),且與的一條對(duì)稱(chēng)軸垂直,與交于兩點(diǎn),為的實(shí)軸長(zhǎng)的2倍,則雙曲線(xiàn)的離心率為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,,,連接是邊上一點(diǎn),過(guò)作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.18.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線(xiàn)與直線(xiàn)所成的角的大小;(2)求點(diǎn)到平面的距離.19.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線(xiàn):(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線(xiàn):.(1)求曲線(xiàn)的普通方程以及曲線(xiàn)的平面直角坐標(biāo)方程;(2)若曲線(xiàn)上恰好存在三個(gè)不同的點(diǎn)到曲線(xiàn)的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).20.(12分)已知拋物線(xiàn)Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線(xiàn)Γ上一點(diǎn),且在第一象限,滿(mǎn)足(2,2)(1)求拋物線(xiàn)Γ的方程;(2)已知經(jīng)過(guò)點(diǎn)A(3,﹣2)的直線(xiàn)交拋物線(xiàn)Γ于M,N兩點(diǎn),經(jīng)過(guò)定點(diǎn)B(3,﹣6)和M的直線(xiàn)與拋物線(xiàn)Γ交于另一點(diǎn)L,問(wèn)直線(xiàn)NL是否恒過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由.21.(12分)在,角、、所對(duì)的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線(xiàn),求的面積.22.(10分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
化簡(jiǎn)到,根據(jù)定義域排除,計(jì)算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域?yàn)?,故錯(cuò)誤;當(dāng)時(shí),,函數(shù)單調(diào)遞增,故正確;當(dāng),關(guān)于的對(duì)稱(chēng)的直線(xiàn)為不在定義域內(nèi),故錯(cuò)誤.平移得到的函數(shù)定義域?yàn)?,故不可能為,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對(duì)稱(chēng),三角函數(shù)平移,意在考查學(xué)生的綜合應(yīng)用能力.2、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.3、C【解析】
解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.4、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運(yùn)行,直至不滿(mǎn)足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運(yùn)行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.5、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.6、D【解析】
由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因?yàn)?,,則,且,所以,,又,即,則,即,故選:D.【點(diǎn)睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.7、A【解析】
過(guò)作與準(zhǔn)線(xiàn)垂直,垂足為,利用拋物線(xiàn)的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線(xiàn)相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過(guò)作與準(zhǔn)線(xiàn)垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線(xiàn)相切,易知此時(shí)直線(xiàn)的斜率存在,設(shè)切線(xiàn)方程為,則.則,則直線(xiàn)的方程為.故選:A.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,涉及到拋物線(xiàn)的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.8、D【解析】
先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)椋褹B,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9、D【解析】
該題可以看做是圓上的動(dòng)點(diǎn)到曲線(xiàn)上的動(dòng)點(diǎn)的距離的平方的最小值問(wèn)題,可以轉(zhuǎn)化為圓心到曲線(xiàn)上的動(dòng)點(diǎn)的距離減去半徑的平方的最值問(wèn)題,結(jié)合圖形,可以斷定那個(gè)點(diǎn)應(yīng)該滿(mǎn)足與圓心的連線(xiàn)與曲線(xiàn)在該點(diǎn)的切線(xiàn)垂直的問(wèn)題來(lái)解決,從而求得切點(diǎn)坐標(biāo),即滿(mǎn)足條件的點(diǎn),代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線(xiàn)上的點(diǎn)與以為圓心,以為半徑的圓上的點(diǎn)的距離的平方的最小值,可以求曲線(xiàn)上的點(diǎn)與圓心的距離的最小值,在曲線(xiàn)上取一點(diǎn),曲線(xiàn)有在點(diǎn)M處的切線(xiàn)的斜率為,從而有,即,整理得,解得,所以點(diǎn)滿(mǎn)足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點(diǎn)睛】本題考查函數(shù)在一點(diǎn)處切線(xiàn)斜率的應(yīng)用,考查圓的程,兩條直線(xiàn)垂直的斜率關(guān)系,屬中檔題.10、D【解析】
對(duì)于①,利用拋物線(xiàn)的定義,利用可判斷;對(duì)于②,設(shè)直線(xiàn)的方程為,與拋物線(xiàn)聯(lián)立,用坐標(biāo)表示直線(xiàn)與直線(xiàn)的斜率乘積,即可判斷;對(duì)于③,將代入拋物線(xiàn)的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線(xiàn)段的中垂線(xiàn)與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線(xiàn)的焦點(diǎn),以線(xiàn)段為直徑的圓為,則圓心為線(xiàn)段的中點(diǎn).設(shè),到準(zhǔn)線(xiàn)的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線(xiàn)的距離為,顯然,,三點(diǎn)不共線(xiàn),則.所以①正確.由題意可設(shè)直線(xiàn)的方程為,代入拋物線(xiàn)的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線(xiàn)與直線(xiàn)的斜率乘積為.所以②正確.將代入拋物線(xiàn)的方程可得,,從而,.根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知,,兩點(diǎn)關(guān)于軸對(duì)稱(chēng),所以過(guò)點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線(xiàn)段的中垂線(xiàn)與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線(xiàn)的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.11、B【解析】
基本事件總數(shù),能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和只有,,,共有個(gè),根據(jù)古典概型求出概率.【詳解】在不超過(guò)的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的只有,,,共有個(gè)則它能表示為兩個(gè)不同費(fèi)馬素?cái)?shù)的和的概率是本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問(wèn)題,是基礎(chǔ)題.12、B【解析】
根據(jù)題意可得平面,,則即異面直線(xiàn)與所成的角,連接CG,在中,,易得,所以,所以,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、0.22.【解析】
正態(tài)曲線(xiàn)關(guān)于x=μ對(duì)稱(chēng),根據(jù)對(duì)稱(chēng)性以及概率和為1求解即可?!驹斀狻俊军c(diǎn)睛】本題考查正態(tài)分布曲線(xiàn)的特點(diǎn)及曲線(xiàn)所表示的意義,是一個(gè)基礎(chǔ)題.14、【解析】
由已知可知直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),求出弦的中點(diǎn)到拋物線(xiàn)準(zhǔn)線(xiàn)的距離,進(jìn)一步得到弦的中點(diǎn)到直線(xiàn)的距離.【詳解】解:如圖,直線(xiàn)過(guò)定點(diǎn),,而拋物線(xiàn)的焦點(diǎn)為,,弦的中點(diǎn)到準(zhǔn)線(xiàn)的距離為,則弦的中點(diǎn)到直線(xiàn)的距離等于.故答案為:.【點(diǎn)睛】本題考查拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查直線(xiàn)與拋物線(xiàn)位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.15、【解析】
把平方利用數(shù)量積的運(yùn)算化簡(jiǎn)即得解.【詳解】因?yàn)椋?,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、【解析】
不妨設(shè)雙曲線(xiàn),焦點(diǎn),令,由的長(zhǎng)為實(shí)軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線(xiàn),焦點(diǎn),對(duì)稱(chēng)軸,由題設(shè)知,因?yàn)榈拈L(zhǎng)為實(shí)軸的二倍,,,,故答案為.【點(diǎn)睛】本題主要考查利用雙曲線(xiàn)的簡(jiǎn)單性質(zhì)求雙曲線(xiàn)的離心率,屬于中檔題.求解與雙曲線(xiàn)性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線(xiàn)等雙曲線(xiàn)的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問(wèn)題應(yīng)先將用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)(3)【解析】
根據(jù)折疊圖形,,由線(xiàn)面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫?,所?...(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標(biāo)原點(diǎn),為軸建立如圖所示的空間直角坐標(biāo)系由題意知由可知,則則有,,設(shè)平面與平面的法向量分別為則有則所以因?yàn)椋獾迷O(shè)所求幾何體的體積為,設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),在是增函數(shù),在上是減函數(shù)當(dāng)時(shí),有最大值,即六面體的體積的最大值是【點(diǎn)睛】本題主要考查線(xiàn)線(xiàn)垂直,線(xiàn)面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.18、(1);(2).【解析】
(1)建立空間坐標(biāo)系,通過(guò)求向量與向量的夾角,轉(zhuǎn)化為異面直線(xiàn)與直線(xiàn)所成的角的大??;(2)先求出面的一個(gè)法向量,再用點(diǎn)到面的距離公式算出即可.【詳解】以為原點(diǎn),所在直線(xiàn)分別為軸建系,設(shè)所以,,所以異面直線(xiàn)與直線(xiàn)所成的角的余弦值為,異面直線(xiàn)與直線(xiàn)所成的角的大小為.(2)因?yàn)椋?,設(shè)是面的一個(gè)法向量,所以有即,令,,故,又,所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查向量法求異面直線(xiàn)所成角的大小和點(diǎn)到面的距離,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運(yùn)算能力.19、(1),;(2),,.【解析】
(1)把曲線(xiàn)的參數(shù)方程與曲線(xiàn)的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個(gè)點(diǎn)的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線(xiàn)的普通方程為,又由得即為,即曲線(xiàn)的平面直角坐標(biāo)方程為(2)∵圓心到曲線(xiàn):的距離,如圖所示,所以直線(xiàn)與圓的切點(diǎn)以及直線(xiàn)與圓的兩個(gè)交點(diǎn),即為所求.∵,則,直線(xiàn)的傾斜角為,即點(diǎn)的極角為,所以點(diǎn)的極角為,點(diǎn)的極角為,所以三個(gè)點(diǎn)的極坐標(biāo)為,,.【點(diǎn)睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線(xiàn)極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標(biāo)方程化為直角坐標(biāo)方程,只要將和換成和即可.20、(1)y2=4x;;(2)直線(xiàn)NL恒過(guò)定點(diǎn)(﹣3,0),理由見(jiàn)解析.【解析】
(1)根據(jù)拋物線(xiàn)的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線(xiàn)方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,﹣2),B(3,﹣6)在這兩條直線(xiàn)上,分別代入兩直線(xiàn)的方程可得y1y2=12,然后表示直線(xiàn)NL的方程為:y﹣y1(x),代入化簡(jiǎn)求解.【詳解】(1)由拋物線(xiàn)的方程可得焦點(diǎn)F(,0),滿(mǎn)足(2,2)的P的坐標(biāo)為(2,2),P在拋物線(xiàn)上,所以(2)2=2p(2),即p2+4p﹣12=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海廠(chǎng)長(zhǎng)經(jīng)理人才有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年太平洋保險(xiǎn)產(chǎn)險(xiǎn)廣東分公司招聘筆試參考題庫(kù)含答案解析
- 二零二五年度林業(yè)資源調(diào)查與測(cè)繪合同范本3篇
- 2025年粵教新版九年級(jí)歷史下冊(cè)階段測(cè)試試卷含答案
- 二零二五年度崇明島危險(xiǎn)化學(xué)品物流配送合同標(biāo)準(zhǔn)文本3篇
- 2025年度消防工程設(shè)計(jì)咨詢(xún)與施工監(jiān)理合同4篇
- 2024年度青海省公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師自我檢測(cè)試卷A卷附答案
- 2024年度陜西省公共營(yíng)養(yǎng)師之四級(jí)營(yíng)養(yǎng)師押題練習(xí)試卷A卷附答案
- 酒店會(huì)議室布局與會(huì)議效率的關(guān)聯(lián)分析
- 教育科技在小學(xué)教育資源均衡分配中的作用
- 2024中考復(fù)習(xí)必背初中英語(yǔ)單詞詞匯表(蘇教譯林版)
- 海員的營(yíng)養(yǎng)-1315醫(yī)學(xué)營(yíng)養(yǎng)霍建穎等講解
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護(hù)理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費(fèi)報(bào)銷(xiāo)單
- 我國(guó)全科醫(yī)生培訓(xùn)模式
- 2021年上海市楊浦區(qū)初三一模語(yǔ)文試卷及參考答案(精校word打印版)
- 八年級(jí)上冊(cè)英語(yǔ)完形填空、閱讀理解100題含參考答案
- 八年級(jí)物理下冊(cè)功率課件
- DBJ51-T 188-2022 預(yù)拌流態(tài)固化土工程應(yīng)用技術(shù)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論