版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省湛江市徐聞縣重點中學2024屆中考沖刺卷數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.計算-5x2-3x2的結果是()A.2x2 B.3x2 C.-8x2 D.8x22.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優(yōu)惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.3.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<44.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.5.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有()A.4個 B.3個 C.2個 D.1個6.如圖是棋盤的一部分,建立適當?shù)钠矫嬷苯亲鴺讼?,已知棋子“車”的坐標為?2,1),棋子“馬”的坐標為(3,-1),則棋子“炮”的坐標為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)7.某小組5名同學在一周內參加家務勞動的時間如表所示,關于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()動時間(小時)33.544.5人數(shù)1121A.中位數(shù)是4,平均數(shù)是3.75 B.眾數(shù)是4,平均數(shù)是3.75C.中位數(shù)是4,平均數(shù)是3.8 D.眾數(shù)是2,平均數(shù)是3.88.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)9.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x410.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°11.某射擊選手10次射擊成績統(tǒng)計結果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、1012.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.14.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數(shù)量關系是________.15.正八邊形的中心角為______度.16.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.17.已知整數(shù)k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.18.圓錐的底面半徑為2,母線長為6,則它的側面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:本次一共調查了多少名購買者?請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為度.若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?20.(6分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.21.(6分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小22.(8分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)23.(8分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關系,部分數(shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關系:y=,設李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?24.(10分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.25.(10分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.26.(12分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?27.(12分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
利用合并同類項法則直接合并得出即可.【詳解】解:故選C.【點睛】此題主要考查了合并同類項,熟練應用合并同類項法則是解題關鍵.2、A【解析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據(jù)題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程解答即可.3、B【解析】
根據(jù)第四象限內點的橫坐標是正數(shù),縱坐標是負數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,
∴解不等式①得,m>1,
解不等式②得,m>所以,不等式組的解集是m>1,
即m的取值范圍是m>1.
故選B.【點睛】本題考查各象限內點的坐標的符號特征以及解不等式,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側一列有兩層,右側一列有一層.5、A【解析】
①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.解題時注意:相似三角形的對應邊成比例.6、B【解析】
直接利用已知點坐標建立平面直角坐標系進而得出答案.【詳解】解:根據(jù)棋子“車”的坐標為(-2,1),建立如下平面直角坐標系:∴棋子“炮”的坐標為(2,1),故答案為:B.【點睛】本題考查了坐標確定位置,正確建立平面直角坐標系是解題的關鍵.7、C【解析】試題解析:這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有5個人,∴第3個人的勞動時間為中位數(shù),故中位數(shù)為:4,平均數(shù)為:=3.1.故選C.8、A【解析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A9、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.10、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.11、B【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).12、C【解析】
過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、5【解析】
作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質、全等三角形的判定與性質、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關鍵,并利用方程的思想解決問題.14、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數(shù),故a+b=1.考點:1角平分線;2平面直角坐標系.15、45°【解析】
運用正n邊形的中心角的計算公式計算即可.【詳解】解:由正n邊形的中心角的計算公式可得其中心角為,故答案為45°.【點睛】本題考查了正n邊形中心角的計算.16、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質,相似三角形的判定與性質等,找出點E的位置是解題的關鍵.17、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!18、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側面積公式求出它的側面積.解:根據(jù)圓錐的側面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)本次一共調查了200名購買者;(2)補全的條形統(tǒng)計圖見解析,A種支付方式所對應的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解析】分析:(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調查的購買者的人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計圖補充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應的圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.20、1-【解析】
利用零指數(shù)冪和絕對值的性質、特殊角的三角函數(shù)值、負指數(shù)次冪的性質進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數(shù)冪和絕對值的性質、特殊角的三角函數(shù)值、負指數(shù)次冪的性質,熟練掌握性質及定義是解題的關鍵.21、(1)∠P=50°;(2)∠P=45°.【解析】
(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角形內角和定理計算即可;
(2)連接AB、AD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質得到AB⊥PA,根據(jù)等腰直角三角形的性質解答.【詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點∴AB⊥PA,∴∠P=∠ABP=45°.【點睛】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于過切點的半徑是解題的關鍵.22、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;
應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.應用:∵四邊形ABCD為菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.23、(1)W=;(2)李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以求得p與x,W與x之間的函數(shù)關系式,并注明自變量x的取值范圍:(2)根據(jù)題意和題目中的函數(shù)表達式可以解答本題;(3)根據(jù)(2)中的結果和不等式的性質可以解答本題.【詳解】(1)設p與x之間的函數(shù)關系式為p=kx+b,則有,解得,,即p與x的函數(shù)關系式為p=0.5x+7(1≤x≤15,x為整數(shù)),當1≤x<10時,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當10≤x≤15時,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當1≤x<10時,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當x=8時,W取得最大值,此時W=324,當10≤x≤15時,W=﹣20x+520,∴當x=10時,W取得最大值,此時W=320,∵324>320,∴李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)當1≤x<10時,令﹣x2+16x+260=299,得x1=3,x2=13,當W>299時,3<x<13,∵1≤x<10,∴3<x<10,當10≤x≤15時,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李師傅獲得獎金的的天數(shù)是第4天到第11天,李師傅共獲得獎金為:20×(11﹣3)=160(元),即李師傅共可獲得160元獎金.【點睛】本題考查了一次函數(shù)的應用,二次函數(shù)的應用等,明確題意,找出各個量之間的關系,確立函數(shù)解析式,利用函數(shù)的性質進行解答是關鍵.24、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,解決相似三角形問題時要注意分類討論.25、(3)a=,方程的另一根為;(2)答案見解析.【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐘點工保潔協(xié)議
- 預制構件購銷制造合同
- 農(nóng)業(yè)借款協(xié)議案例
- 工程勞務分包簡易合同樣本
- 指定代理經(jīng)銷合同
- 個人提供音樂教練勞務合同
- 購銷合同有效期內的責任劃分
- 油漆采購合同樣式
- 購銷合同解除協(xié)議的簽訂
- 借款合同到期后續(xù)簽協(xié)議
- 美育-美即生活 美育期末試卷及答案
- 網(wǎng)站項目功能測試驗收報告
- 自考02313電力系統(tǒng)微型計算機繼電保護歷年(12-19)真題試卷
- 馬克思主義基本原理智慧樹知到答案章節(jié)測試2023年重慶工商大學
- 合理性、先進性的證明
- 人教版數(shù)學三年級上冊分數(shù)的初步認識分數(shù)的初步認識-課件16
- 選必中第一單元大單元教學設計
- GB/T 34281-2017全民健身活動中心分類配置要求
- GB/T 33322-2016橡膠增塑劑芳香基礦物油
- GB/T 23988-2009涂料耐磨性測定落砂法
- GB/T 1962.2-2001注射器、注射針及其他醫(yī)療器械6%(魯爾)圓錐接頭第2部分:鎖定接頭
評論
0/150
提交評論