陜西省西安市長(zhǎng)安區(qū)2024屆中考數(shù)學(xué)最后一模試卷含解析_第1頁
陜西省西安市長(zhǎng)安區(qū)2024屆中考數(shù)學(xué)最后一模試卷含解析_第2頁
陜西省西安市長(zhǎng)安區(qū)2024屆中考數(shù)學(xué)最后一模試卷含解析_第3頁
陜西省西安市長(zhǎng)安區(qū)2024屆中考數(shù)學(xué)最后一模試卷含解析_第4頁
陜西省西安市長(zhǎng)安區(qū)2024屆中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省西安市長(zhǎng)安區(qū)2024屆中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列調(diào)查中,調(diào)查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時(shí)間,選擇全面調(diào)查B.為了解襄陽市電視臺(tái)《襄陽新聞》欄目的收視率,選擇全面調(diào)查C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選擇抽樣調(diào)查D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查2.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)3.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點(diǎn),且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.54.下列計(jì)算正確的是()A.(a2)3=a6 B.a(chǎn)2?a3=a6 C.a(chǎn)3+a4=a7 D.(ab)3=ab35.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個(gè)正方形,正確的選擇為()A.① B.② C.③ D.④6.下列美麗的壯錦圖案是中心對(duì)稱圖形的是()A. B. C. D.7.如圖是二次函數(shù)的圖象,有下面四個(gè)結(jié)論:;;;,其中正確的結(jié)論是

A. B. C. D.8.如圖是某個(gè)幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱9.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°10.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個(gè)數(shù)是()A.4 B.3 C.2 D.111.“嫦娥一號(hào)”衛(wèi)星順利進(jìn)入繞月工作軌道,行程約有1800000千米,1800000這個(gè)數(shù)用科學(xué)記數(shù)法可以表示為A. B. C. D.12.港珠澳大橋目前是全世界最長(zhǎng)的跨海大橋,其主體工程“海中橋隧”全長(zhǎng)35578米,數(shù)據(jù)35578用科學(xué)記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×105二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知直角三角形的兩邊長(zhǎng)分別為3、1.則第三邊長(zhǎng)為________.14.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A′處,當(dāng)A′E⊥AC時(shí),A′B=____.15.因式分解:4ax2﹣4ay2=_____.16.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點(diǎn)O,連接OC,若BC=3,AC=4,則tan∠OCB=_____17.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.18.如圖,已知圓柱底面的周長(zhǎng)為,圓柱高為,在圓柱的側(cè)面上,過點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)綜合與實(shí)踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習(xí)完特殊的平行四邊形之后,某學(xué)習(xí)小組針對(duì)矩形中的折疊問題進(jìn)行了研究.問題背景:在矩形ABCD中,點(diǎn)E、F分別是BC、AD上的動(dòng)點(diǎn),且BE=DF,連接EF,將矩形ABCD沿EF折疊,點(diǎn)C落在點(diǎn)C′處,點(diǎn)D落在點(diǎn)D′處,射線EC′與射線DA相交于點(diǎn)M.猜想與證明:(1)如圖1,當(dāng)EC′與線段AD交于點(diǎn)M時(shí),判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),請(qǐng)?jiān)趫D2中作出此時(shí)的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標(biāo)注相應(yīng)的字母);操作與探究:(3)如圖3,當(dāng)點(diǎn)M在線段DA延長(zhǎng)線上時(shí),線段C′D'分別與AD,AB交于P,N兩點(diǎn)時(shí),C′E與AB交于點(diǎn)Q,連接MN并延長(zhǎng)MN交EF于點(diǎn)O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點(diǎn)E由點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過程中,點(diǎn)D'所經(jīng)過的路徑的長(zhǎng)為.20.(6分)如圖,在銳角△ABC中,小明進(jìn)行了如下的尺規(guī)作圖:①分別以點(diǎn)A、B為圓心,以大于12AB的長(zhǎng)為半徑作弧,兩弧分別相交于點(diǎn)P、Q②作直線PQ分別交邊AB、BC于點(diǎn)E、D.小明所求作的直線DE是線段AB的;聯(lián)結(jié)AD,AD=7,sin∠DAC=17,BC=9,求AC21.(6分)觀察下列各式:①②③由此歸納出一般規(guī)律__________.22.(8分)如圖,拋物線y=-x2+bx+c的頂點(diǎn)為C,對(duì)稱軸為直線x=1,且經(jīng)過點(diǎn)A(3,-1),與y軸交于點(diǎn)B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點(diǎn)A的直線交拋物線于點(diǎn)P,交x軸于點(diǎn)Q,若S△OPA=2S△OQA,試求出點(diǎn)P的坐標(biāo).23.(8分)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點(diǎn)為F,F(xiàn)H∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長(zhǎng).24.(10分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長(zhǎng)線交于.(1)求證:是圓的切線;(2)如圖2,延長(zhǎng),交圓于點(diǎn),點(diǎn)是劣弧的中點(diǎn),,,求的長(zhǎng).25.(10分)如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的動(dòng)點(diǎn),PC∥AB,點(diǎn)M是OP中點(diǎn).(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當(dāng)∠BOP=時(shí),四邊形AOCP是菱形;②連接BP,當(dāng)∠ABP=時(shí),PC是⊙O的切線.26.(12分)已知,拋物線(為常數(shù)).(1)拋物線的頂點(diǎn)坐標(biāo)為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點(diǎn)且與圖象交點(diǎn)的縱坐標(biāo)為3,請(qǐng)?jiān)趫D1中畫出拋物線的簡(jiǎn)圖,并求的函數(shù)表達(dá)式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標(biāo)軸,,若拋物線經(jīng)過兩點(diǎn),且矩形在其對(duì)稱軸的左側(cè),則對(duì)角線的最小值是.27.(12分)“千年古都,大美西安”.某校數(shù)學(xué)興趣小組就“最想去的西安旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),(景點(diǎn)對(duì)應(yīng)的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動(dòng)物園E:曲江海洋館).下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:請(qǐng)根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B”的學(xué)生人數(shù).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

A.為了解襄陽市初中每天鍛煉所用時(shí)間,選擇抽樣調(diào)查,故A不符合題意;B.為了解襄陽市電視臺(tái)《襄陽新聞》欄目的收視率,選擇抽樣調(diào)查,故B不符合題意;C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選普查,故C不符合題意;D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查,故D符合題意;故選D.2、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對(duì)頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯(cuò)誤;綜上所述,結(jié)論正確的是①②③④共4個(gè).故選C.【點(diǎn)睛】考點(diǎn):1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)3、A【解析】

連接AO并延長(zhǎng)到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長(zhǎng)到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點(diǎn),AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽R(shí)t△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點(diǎn)睛】本題主要考查了圓周角定理、勾股定理,解題的關(guān)鍵是掌握輔助線的作法.4、A【解析】分析:根據(jù)冪的乘方、同底數(shù)冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數(shù)不變,指數(shù)相乘,原式計(jì)算正確;B、同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加,原式=,故錯(cuò)誤;C、不是同類項(xiàng),無法進(jìn)行加法計(jì)算;D、積的乘方等于乘方的積,原式=,計(jì)算錯(cuò)誤;故選A.點(diǎn)睛:本題主要考查的是冪的乘方、同底數(shù)冪的乘法、積的乘方計(jì)算法則,屬于基礎(chǔ)題型.理解各種計(jì)算法則是解題的關(guān)鍵.5、C【解析】

根據(jù)正方形的判定定理即可得到結(jié)論.【詳解】與左邊圖形拼成一個(gè)正方形,正確的選擇為③,故選C.【點(diǎn)睛】本題考查了正方形的判定,是一道幾何結(jié)論開放題,認(rèn)真觀察,熟練掌握和應(yīng)用正方形的判定方法是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)中心對(duì)稱圖形的定義逐項(xiàng)進(jìn)行判斷即可得.【詳解】A、是中心對(duì)稱圖形,故此選項(xiàng)正確;B、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤,故選A.【點(diǎn)睛】本題主要考查了中心對(duì)稱圖形,熟練掌握中心對(duì)稱圖形的定義是解題的關(guān)鍵;把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形.7、D【解析】

根據(jù)拋物線開口方向得到,根據(jù)對(duì)稱軸得到,根據(jù)拋物線與軸的交點(diǎn)在軸下方得到,所以;時(shí),由圖像可知此時(shí),所以;由對(duì)稱軸,可得;當(dāng)時(shí),由圖像可知此時(shí),即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對(duì)稱軸得到,根據(jù)拋物線與軸的交點(diǎn)在軸下方得到,所以,故①正確.②時(shí),由圖像可知此時(shí),即,故②正確.③由對(duì)稱軸,可得,所以錯(cuò)誤,故③錯(cuò)誤;④當(dāng)時(shí),由圖像可知此時(shí),即,將③中變形為,代入可得,故④正確.故答案選D.【點(diǎn)睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,注意用數(shù)形結(jié)合的思想解決問題。8、A【解析】

側(cè)面為三個(gè)長(zhǎng)方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個(gè)幾何體是三棱柱.

故選A.【點(diǎn)睛】本題考查的是三棱柱的展開圖,對(duì)三棱柱有充分的理解是解題的關(guān)鍵..9、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.10、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對(duì)稱軸位置可得b>0,由拋物線與y軸的交點(diǎn)位置可得c>0,則可對(duì)①進(jìn)行判斷;根據(jù)拋物線與x軸的交點(diǎn)個(gè)數(shù)得到b2﹣4ac>0,加上a<0,則可對(duì)②進(jìn)行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對(duì)③進(jìn)行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點(diǎn)問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對(duì)④進(jìn)行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對(duì)稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個(gè)交點(diǎn),∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯(cuò)誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.11、C【解析】分析:一個(gè)絕對(duì)值大于10的數(shù)可以表示為的形式,其中為整數(shù).確定的值時(shí),整數(shù)位數(shù)減去1即可.當(dāng)原數(shù)絕對(duì)值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),是負(fù)數(shù).詳解:1800000這個(gè)數(shù)用科學(xué)記數(shù)法可以表示為故選C.點(diǎn)睛:考查科學(xué)記數(shù)法,掌握絕對(duì)值大于1的數(shù)的表示方法是解題的關(guān)鍵.12、B【解析】

科學(xué)計(jì)數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點(diǎn)睛】本題主要考查的是利用科學(xué)計(jì)數(shù)法表示較大的數(shù),屬于基礎(chǔ)題型.理解科學(xué)計(jì)數(shù)法的表示方法是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4或【解析】試題分析:已知直角三角形兩邊的長(zhǎng),但沒有明確是直角邊還是斜邊,因此分兩種情況討論:①長(zhǎng)為3的邊是直角邊,長(zhǎng)為3的邊是斜邊時(shí):第三邊的長(zhǎng)為:;②長(zhǎng)為3、3的邊都是直角邊時(shí):第三邊的長(zhǎng)為:;∴第三邊的長(zhǎng)為:或4.考點(diǎn):3.勾股定理;4.分類思想的應(yīng)用.14、或7【解析】

分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長(zhǎng),證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長(zhǎng),并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長(zhǎng).【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點(diǎn),BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長(zhǎng)線于F,延長(zhǎng)A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長(zhǎng)為或.故答案為:或.【點(diǎn)睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.15、4a(x﹣y)(x+y)【解析】

首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.16、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點(diǎn)睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.17、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當(dāng)m﹣n=4時(shí),原式=2×42=1.故答案為:1.18、【解析】

要求絲線的長(zhǎng),需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.

∵圓柱底面的周長(zhǎng)為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長(zhǎng)最小為2AC=4dm.

故答案為:4dm【點(diǎn)睛】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進(jìn)而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對(duì)稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進(jìn)而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點(diǎn)D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點(diǎn)D'所經(jīng)過的路徑的長(zhǎng).【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點(diǎn)E由點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過程中,點(diǎn)D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長(zhǎng)為L(zhǎng)=.故答案為.【點(diǎn)睛】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、弧長(zhǎng)計(jì)算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.20、(1)線段AB的垂直平分線(或中垂線);(2)AC=53.【解析】

(1)垂直平分線:經(jīng)過某一條線段的中點(diǎn),并且垂直于這條線段的直線,叫做這條線段的垂直平分線(2)根據(jù)題意垂直平分線定理可得AD=BD,得到CD=2,又因?yàn)橐阎猻in∠DAC=17【詳解】(1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);故答案為線段AB的垂直平分線(或中垂線);(2)過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,如圖,∵DE是線段AB的垂直平分線,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【點(diǎn)睛】本題考查了垂直平分線的尺規(guī)作圖方法,三角函數(shù)和勾股定理求線段長(zhǎng)度,解本題的關(guān)鍵是充分利用中垂線,將已知條件與未知條件結(jié)合起來解題.21、xn+1-1【解析】試題分析:觀察其右邊的結(jié)果:第一個(gè)是﹣1;第二個(gè)是﹣1;…依此類推,則第n個(gè)的結(jié)果即可求得.試題解析:(x﹣1)(++…x+1)=.故答案為.考點(diǎn):平方差公式.22、(1)y=-x2+2x+2;(2)詳見解析;(3)點(diǎn)P的坐標(biāo)為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】

(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo)求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質(zhì)求出PE的長(zhǎng),即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當(dāng)x=0時(shí),y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當(dāng)點(diǎn)Q在線段AP上時(shí),過點(diǎn)P作PE⊥x軸于點(diǎn)E,AD⊥x軸于點(diǎn)D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當(dāng)點(diǎn)Q在PA延長(zhǎng)線上時(shí),過點(diǎn)P作PE⊥x軸于點(diǎn)E,AD⊥x軸于點(diǎn)D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),綜上可知:點(diǎn)P的坐標(biāo)為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【點(diǎn)睛】本題考查了二次函數(shù)的圖象和性質(zhì),用待定系數(shù)法求二次函數(shù)的解析式,相似三角形的性質(zhì)和判定等知識(shí)點(diǎn),能求出符合的所有情況是解此題的關(guān)鍵.23、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點(diǎn)F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=24、(1)詳見解析;(2)【解析】

(1)連接OA,利用切線的判定證明即可;

(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結(jié)OA,

∵OA=OB,OC⊥AB,

∴∠AOC=∠BOC,

又∠BAD=∠BOC,

∴∠BAD=∠AOC

∵∠AOC+∠OAC=90°,

∴∠BAD+∠OAC=90°,

∴OA⊥AD,

即:直線AD是⊙O的切線;

(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),

∵BE是直徑,

∴∠EAB=90°,

∴OC∥AE,

∵OB=,

∴BE=13

∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4

在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,

在直角△PEB中,BE=13,PB2=BE2-PE2,

PB==3.【點(diǎn)睛】本題考查了切線的判定,勾股定理,正確的作出輔助線是解題的關(guān)鍵.25、(1)見解析;(2)①120°;②45°【解析】

(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結(jié)論;

(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切線的性質(zhì)和平行線的性質(zhì)得出∠BOP=90°,由等腰三角形的性質(zhì)得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點(diǎn)M是OP的中點(diǎn),∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論