




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省德陽市東湖博愛中學(xué)2024屆中考五模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.2.計算﹣的結(jié)果為()A. B. C. D.3.下列計算正確的是()A.a(chǎn)2+a2=a4 B.a(chǎn)5?a2=a7 C.(a2)3=a5 D.2a2﹣a2=24.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.25.已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學(xué)記數(shù)法表示為()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1076.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC7.計算tan30°的值等于()A.3B.33C.338.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.9.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.10.計算的結(jié)果是()A. B. C. D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.已知關(guān)于x的方程x2﹣2x﹣m=0沒有實數(shù)根,那么m的取值范圍是_____.12.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據(jù)該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.13.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.14.因式分解:2m2﹣8n2=.15.若關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.16.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.三、解答題(共8題,共72分)17.(8分)在某小學(xué)“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結(jié)論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結(jié)論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結(jié)論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結(jié)論,則小選手可入圍進(jìn)入復(fù)賽,問琪琪進(jìn)入復(fù)賽的概率是多少?18.(8分)某初級中學(xué)正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當(dāng)先行”的“創(chuàng)文活動”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對該校全體志愿者進(jìn)行隨機(jī)抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計圖.條形統(tǒng)計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統(tǒng)計圖中的百分?jǐn)?shù)指的是該年級被抽到的志愿者數(shù)與樣本容量的比.請補(bǔ)全條形統(tǒng)計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?19.(8分)如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.試判斷PD與⊙O的位置關(guān)系,并說明理由;若點C是弧AB的中點,已知AB=4,求CE?CP的值.20.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時,求點P的坐標(biāo);(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.21.(8分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標(biāo);(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.22.(10分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.(1)求雙曲線解析式;(2)點P在x軸上,如果△ACP的面積為5,求點P的坐標(biāo).23.(12分)反比例函數(shù)的圖象經(jīng)過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.24.如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關(guān)系?請說明理由;若過O點的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最?。还蔬xA.【點睛】此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而小.2、A【解析】
根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。3、B【解析】
根據(jù)整式的加減乘除乘方運算法則逐一運算即可。【詳解】A.,故A選項錯誤。B.,故B選項正確。C.,故C選項錯誤。D.,故D選項錯誤。故答案選B.【點睛】本題考查整式加減乘除運算法則,只需熟記法則與公式即可。4、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了勾股定理.5、B【解析】分析:絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.詳解:0.000000823=8.23×10-1.故選B.點睛:本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.6、D【解析】
解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【點睛】本題考查作圖—復(fù)雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).7、C【解析】tan30°=338、B【解析】
根據(jù)折疊的性質(zhì)可知AE=DE=3,然后根據(jù)勾股定理求CD的長,然后利用正弦公式進(jìn)行計算即可.【詳解】解:由折疊性質(zhì)可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質(zhì),勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關(guān)鍵.9、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡單,適合隨堂訓(xùn)練.10、D【解析】
根據(jù)同分母分式的加法法則計算可得結(jié)論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.二、填空題(本大題共6個小題,每小題3分,共18分)11、m<﹣1.【解析】
根據(jù)根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【詳解】∵關(guān)于x的方程x2﹣2x﹣m=0沒有實數(shù)根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.12、17【解析】
根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權(quán)平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權(quán)平均數(shù)的計算方法,屬于簡單題,計算25元所占權(quán)比是解題關(guān)鍵.13、【解析】
設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.14、2(m+2n)(m﹣2n).【解析】試題分析:根據(jù)因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數(shù)的最大公約數(shù)2,進(jìn)一步發(fā)現(xiàn)提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.15、k<5且k≠1.【解析】試題解析:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且16、3【解析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關(guān)系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3【點睛】考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),以及三角形的三邊關(guān)系,恰當(dāng)添加輔助線構(gòu)造全等三角形是本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)見解析;(2);(3).【解析】
(1)根據(jù)列樹狀圖的步驟和題意分析所有等可能的出現(xiàn)結(jié)果,即可畫出圖形;(2)根據(jù)(1)求出甲、乙兩位評委給出相同結(jié)論的情況數(shù),再根據(jù)概率公式即可求出答案;(3)根據(jù)(1)即可求出琪琪進(jìn)入復(fù)賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結(jié)果,只有甲、乙兩位評委給出相同結(jié)論的有2種可能,∴只有甲、乙兩位評委給出相同結(jié)論的概率P=;(3)∵共有8種等可能結(jié)果,三位評委中至少有兩位給出“通過”結(jié)論的有4種可能,∴樂樂進(jìn)入復(fù)賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結(jié)論的情況數(shù)是本題的關(guān)鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P=.18、(1)作圖見解析;(2)1.【解析】試題分析:(1)根據(jù)百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數(shù)畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總?cè)藬?shù)=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.19、(1)PD是⊙O的切線.證明見解析.(2)1.【解析】試題分析:(1)連結(jié)OP,根據(jù)圓周角定理可得∠AOP=2∠ACP=120°,然后計算出∠PAD和∠D的度數(shù),進(jìn)而可得∠OPD=90°,從而證明PD是⊙O的切線;(2)連結(jié)BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC長,再證明△CAE∽△CPA,進(jìn)而可得,然后可得CE?CP的值.試題解析:(1)如圖,PD是⊙O的切線.證明如下:連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線.(2)連結(jié)BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=()2=1.考點:相似三角形的判定與性質(zhì);圓心角、弧、弦的關(guān)系;直線與圓的位置關(guān)系;探究型.20、(1)y=x2+3x;(2)當(dāng)PO+PC的值最小時,點P的坐標(biāo)為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標(biāo)及A點坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標(biāo)即可;(3)存在,分別根據(jù)①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當(dāng)點P與點D重合時,PA+PC=AC;當(dāng)點P不與點D重合時,PA+PC>AC;∴當(dāng)點P與點D重合時,PO+PC的值最小,設(shè)直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當(dāng)x=2時,,∴當(dāng)PO+PC的值最小時,點P的坐標(biāo)為(2,);(3)存在.①AC為對角線,當(dāng)四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當(dāng)四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標(biāo)為6,當(dāng)x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當(dāng)四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標(biāo)為?2,當(dāng)x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.21、(1);(2)和;(3)【解析】
(1)設(shè),,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標(biāo),設(shè)出點Q坐標(biāo),利用平行四邊形的性質(zhì),分類討論點P坐標(biāo),利用全等的性質(zhì)得出P點的橫坐標(biāo)后,分別代入拋物線解析式,求出P點坐標(biāo);(3)過點作DH⊥軸于點,由::,可得::.設(shè),可得點坐標(biāo)為,可得.設(shè)點坐標(biāo)為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設(shè),,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標(biāo)為,∴即點坐標(biāo)為.②當(dāng)以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標(biāo)為,∴即點坐標(biāo)為∴符合條件的點坐標(biāo)為和.過點作DH⊥軸于點,∵::,∴::.設(shè),則點坐標(biāo)為,∴.∵點在拋物線上,∴點坐標(biāo)為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年稅務(wù)師備考必避坑試題及答案
- 數(shù)據(jù)分析的實際技巧 試題及答案解析
- 食品安全課程復(fù)習(xí)試題及答案
- 2025企業(yè)租賃合同標(biāo)準(zhǔn)版
- 2025中介服務(wù)傭金合同范本
- 2025年高考考前信息必刷卷02英語(新高考I卷)解析版
- 2025停車場承包協(xié)議合同書
- 生育補(bǔ)貼政策落地方案
- 2025專項許可經(jīng)營合同
- 低空經(jīng)濟(jì)政策紅利與產(chǎn)業(yè)機(jī)遇透析
- 《碳排放管理師》(高級)培訓(xùn)考試模擬題及答案
- 2024年重慶市高考?xì)v史試卷(含答案)
- SH/T 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設(shè)計規(guī)范(正式版)
- 湖南省張家界市慈利縣2023-2024學(xué)年八年級下學(xué)期期中考試物理試題
- 金屬非金屬地下礦山監(jiān)測監(jiān)控系統(tǒng)建設(shè)規(guī)范
- 2024年蘇州市軌道交通集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 新概念英語第2冊課文(完整版)
- 水培吊蘭的養(yǎng)殖方法要領(lǐng)
- 動物的遷徙行為與地球生態(tài)系統(tǒng)
- 【小學(xué)心理健康教育分析國內(nèi)外文獻(xiàn)綜述4100字】
- 2025年日歷日程表含農(nóng)歷可打印
評論
0/150
提交評論