




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省白山一中2024年高考沖刺押題(最后一卷)數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.相傳黃帝時(shí)代,在制定樂(lè)律時(shí),用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計(jì)算過(guò)程,若輸入的的值為1,輸出的的值為()A. B. C. D.2.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.3.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.94.函數(shù)的部分圖象大致為()A. B.C. D.5.已知雙曲線的右焦點(diǎn)為,過(guò)原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長(zhǎng)交右支于點(diǎn),若,則雙曲線的離心率是()A. B. C. D.6.已知集合,,則()A. B.C. D.7.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長(zhǎng)為,則雙曲線的離心率為()A.2 B. C. D.38.在中,內(nèi)角所對(duì)的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列9.()A. B. C. D.10.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.211.臺(tái)球是一項(xiàng)國(guó)際上廣泛流行的高雅室內(nèi)體育運(yùn)動(dòng),也叫桌球(中國(guó)粵港澳地區(qū)的叫法)、撞球(中國(guó)地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺(tái)球技術(shù)表演節(jié)目中,在臺(tái)球桌上,畫出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個(gè)目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過(guò)擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長(zhǎng)為()A.50cm B.40cm C.50cm D.20cm12.已知函數(shù)的圖象的一條對(duì)稱軸為,將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)有個(gè)不同的零點(diǎn),則的取值范圍是___________.14.已知數(shù)列滿足,且,則______.15.已知復(fù)數(shù)(為虛數(shù)單位),則的模為_(kāi)___.16.已知點(diǎn)是雙曲線漸近線上的一點(diǎn),則雙曲線的離心率為_(kāi)______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說(shuō)明理由.18.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意,有,求實(shí)數(shù)的值.19.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點(diǎn)在線段上,且平面,,,求二面角的余弦值.20.(12分)已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.(1)求拋物線的方程;(2)過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.21.(12分)已知某種細(xì)菌的適宜生長(zhǎng)溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個(gè)2530385066120218對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:20784.11123.8159020.5其中,.(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說(shuō)明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.22.(10分)如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn),.(Ⅰ)證明:;(Ⅱ)若為上的動(dòng)點(diǎn),求與平面所成最大角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)循環(huán)語(yǔ)句,輸入,執(zhí)行循環(huán)語(yǔ)句即可計(jì)算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點(diǎn)睛】本題考查了循環(huán)語(yǔ)句的程序框圖,求輸出的結(jié)果,解答此類題目時(shí)結(jié)合循環(huán)的條件進(jìn)行計(jì)算,需要注意跳出循環(huán)的判定語(yǔ)句,本題較為基礎(chǔ).2、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.3、D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時(shí),,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個(gè),
故選D.【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.4、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻?,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!军c(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。5、D【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,,根據(jù)對(duì)稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.6、A【解析】
根據(jù)對(duì)數(shù)性質(zhì)可知,再根據(jù)集合的交集運(yùn)算即可求解.【詳解】∵,集合,∴由交集運(yùn)算可得.故選:A.【點(diǎn)睛】本題考查由對(duì)數(shù)的性質(zhì)比較大小,集合交集的簡(jiǎn)單運(yùn)算,屬于基礎(chǔ)題.7、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長(zhǎng)為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問(wèn)題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.8、C【解析】
由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.9、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.10、B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)椋?,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.11、D【解析】
過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來(lái),根據(jù),列方程求出,進(jìn)而可得正方形的邊長(zhǎng).【詳解】過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)?,則,整理化簡(jiǎn)得,又,得,.即該正方形的邊長(zhǎng)為.故選:D.【點(diǎn)睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.12、C【解析】
根據(jù)輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合為函數(shù)的一條對(duì)稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡(jiǎn)可得,因?yàn)闉楹瘮?shù)圖象的一條對(duì)稱軸,代入可得,即,化簡(jiǎn)可解得,即,所以將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡(jiǎn)三角函數(shù)式的應(yīng)用,三角函數(shù)對(duì)稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出函數(shù)的圖象及直線,如下圖所示,因?yàn)楹瘮?shù)有個(gè)不同的零點(diǎn),所以由圖象可知,,,所以.14、【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.15、【解析】,所以.16、【解析】
先表示出漸近線,再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線是因?yàn)樵跐u近線上,所以,故答案為:【點(diǎn)睛】考查雙曲線的離心率的求法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當(dāng)時(shí)取等號(hào).故,且當(dāng)時(shí)取等號(hào).所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點(diǎn)定位】基本不等式.18、(1),(2)(3)【解析】
(1)假設(shè)公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式,化簡(jiǎn)式子,可得,,然后利用公式法,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,利用錯(cuò)位相減法求和,可得結(jié)果.(3)計(jì)算出,代值計(jì)算并化簡(jiǎn),可得結(jié)果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應(yīng)用,以及利用錯(cuò)位相減法求和,屬基礎(chǔ)題.19、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進(jìn)而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而B(niǎo)D⊥AC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點(diǎn)為G,推導(dǎo)出EC//FG,取BC的中點(diǎn)為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因?yàn)槠矫嫫矫?,所以平面,所以,因?yàn)?,所以平面,所以,因?yàn)樗倪呅问瞧叫兴倪呅?,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,取的中點(diǎn)為,連接,則,因?yàn)槠矫嫫矫妫悦?,以為坐?biāo)原點(diǎn),以過(guò)點(diǎn)且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因?yàn)?,所以二面角的余弦值?解法二:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫妫矫嫫矫嬗?,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,,所以平面,所以,取中點(diǎn),連接、,因?yàn)?,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因?yàn)?,,在中,,所以,所以二面角的余弦值?【點(diǎn)睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進(jìn)而證明線線相等,屬于中檔題.20、(1)(2)【解析】
(1)因?yàn)椋傻?,即可求得答案;?)分別設(shè)、的斜率為和,切點(diǎn),,可得過(guò)點(diǎn)的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進(jìn)而求得切點(diǎn),坐標(biāo),根據(jù)兩點(diǎn)間距離公式求得,根據(jù)點(diǎn)到直線距離公式求得點(diǎn)到切線的距離,進(jìn)而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點(diǎn),,過(guò)點(diǎn)的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 膠合板生產(chǎn)線節(jié)能改造案例分析-深度研究
- 路由器網(wǎng)絡(luò)優(yōu)化設(shè)計(jì)-深度研究
- 貨運(yùn)代理市場(chǎng)細(xì)分研究-深度研究
- 爆破設(shè)備智能化檢測(cè)-深度研究
- 虛擬現(xiàn)實(shí)健身應(yīng)用-第1篇-深度研究
- 跨文化精神障礙研究-深度研究
- 跨文化交流與沖突-深度研究
- 生存本能與認(rèn)知發(fā)展-深度研究
- 跨鏈數(shù)據(jù)隱私保護(hù)-深度研究
- 虛擬現(xiàn)實(shí)技術(shù)在智能家居安全中的應(yīng)用-深度研究
- 感動(dòng)中國(guó)人物-于敏
- 《中國(guó)特色社會(huì)主義法治理論》復(fù)習(xí)題集及解析共20篇
- 融資租賃租金計(jì)算表
- 數(shù)據(jù)結(jié)構(gòu)英文教學(xué)課件:Chapter 5 Recursion
- 《中國(guó)—東盟自由貿(mào)易區(qū)概論》新版
- 棕色偵探推理劇本殺活動(dòng)方案項(xiàng)目介紹ppt模板
- 降低鉆孔灌注樁混凝土充盈系數(shù)QC
- 華中數(shù)控車床編程及操作PPT課件
- 趣味歷史(課堂PPT)
- 供應(yīng)鏈供應(yīng)鏈管理
- 《消防安全評(píng)估檢查記錄》
評(píng)論
0/150
提交評(píng)論