江蘇省蘇州市五校聯(lián)考2024年高考仿真卷數(shù)學(xué)試卷含解析_第1頁
江蘇省蘇州市五校聯(lián)考2024年高考仿真卷數(shù)學(xué)試卷含解析_第2頁
江蘇省蘇州市五校聯(lián)考2024年高考仿真卷數(shù)學(xué)試卷含解析_第3頁
江蘇省蘇州市五校聯(lián)考2024年高考仿真卷數(shù)學(xué)試卷含解析_第4頁
江蘇省蘇州市五校聯(lián)考2024年高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省蘇州市五校聯(lián)考2024年高考仿真卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)有且只有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.2.的展開式中的系數(shù)為()A.5 B.10 C.20 D.303.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]4.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.45.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費(fèi)開支占總開支的百分比為()A. B. C. D.6.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.7.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對(duì)稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.8.已知是邊長為的正三角形,若,則A. B.C. D.9.設(shè)集合,則()A. B.C. D.10.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.11.給出個(gè)數(shù),,,,,,其規(guī)律是:第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,以此類推,要計(jì)算這個(gè)數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;12.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)是拋物線上動(dòng)點(diǎn),是拋物線的焦點(diǎn),點(diǎn)的坐標(biāo)為,則的最小值為______________.14.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值為__________.15.已知內(nèi)角的對(duì)邊分別為外接圓的面積為,則的面積為_________.16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)對(duì)設(shè)備進(jìn)行升級(jí)改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,該項(xiàng)質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.圖:設(shè)備改造前樣本的頻率分布直方圖表:設(shè)備改造后樣本的頻率分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)求圖中實(shí)數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價(jià)240元;質(zhì)量指標(biāo)值落在區(qū)間或內(nèi)的定為二等品,每件售價(jià)180元;其他的合格品定為三等品,每件售價(jià)120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.若有一名顧客隨機(jī)購買兩件產(chǎn)品支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.18.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,且.(1)證明:;(2)若的面積,,求角.19.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說明理由.20.(12分)一張邊長為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.21.(12分)在平面直角坐標(biāo)系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設(shè)直線(為參數(shù))與曲線相交于不同兩點(diǎn),.(1)若,求線段的中點(diǎn)的坐標(biāo);(2)設(shè)點(diǎn),若,求直線的斜率.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點(diǎn),求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由是偶函數(shù),則只需在上有且只有兩個(gè)零點(diǎn)即可.【詳解】解:顯然是偶函數(shù)所以只需時(shí),有且只有2個(gè)零點(diǎn)即可令,則令,遞減,且遞增,且時(shí),有且只有2個(gè)零點(diǎn),只需故選:B【點(diǎn)睛】考查函數(shù)性質(zhì)的應(yīng)用以及根據(jù)零點(diǎn)個(gè)數(shù)確定參數(shù)的取值范圍,基礎(chǔ)題.2、C【解析】

由知,展開式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_式的通項(xiàng)為,所以展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開式中的特定項(xiàng),解決這類問題要注意通項(xiàng)公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.3、B【解析】

作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.4、C【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.5、A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計(jì)算出水費(fèi)開支占水、電、交通開支的比例,相乘即可求出水費(fèi)開支占總開支的百分比.【詳解】水費(fèi)開支占總開支的百分比為.故選:A【點(diǎn)睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.6、B【解析】

解:當(dāng)直線過點(diǎn)時(shí),最大,故選B7、B【解析】

先利用對(duì)稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對(duì)稱性可得:為的中點(diǎn),且,所以,因?yàn)椋?,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.8、A【解析】

由可得,因?yàn)槭沁呴L為的正三角形,所以,故選A.9、B【解析】

直接進(jìn)行集合的并集、交集的運(yùn)算即可.【詳解】解:;∴.故選:B.【點(diǎn)睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運(yùn)算,是基礎(chǔ)題.10、B【解析】

根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.11、A【解析】

要計(jì)算這個(gè)數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因?yàn)橛?jì)算這個(gè)數(shù)的和,循環(huán)變量的初值為1,所以步長應(yīng)該為1,故判斷語句①應(yīng)為,第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,這樣可以確定語句②為,故本題選A.【點(diǎn)睛】本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.12、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

過點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角.故當(dāng)和拋物線相切時(shí),的值最小.再利用直線的斜率公式、導(dǎo)數(shù)的幾何意義求得切點(diǎn)的坐標(biāo),從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點(diǎn),準(zhǔn)線方程為,過點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角.故當(dāng)最小時(shí),的值最小.設(shè)切點(diǎn),由的導(dǎo)數(shù)為,則的斜率為,求得,可得,,,.故答案為:.【點(diǎn)睛】本題考查拋物線的定義,性質(zhì)的簡(jiǎn)單應(yīng)用,直線的斜率公式,導(dǎo)數(shù)的幾何意義,屬于中檔題.14、【解析】

由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對(duì)應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對(duì)任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.15、【解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點(diǎn)睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.16、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點(diǎn):1.三視圖;2.空間幾何體的表面積與體積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計(jì)算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費(fèi)用的所有取值為240,300,360,420,480,由相互獨(dú)立事件的概率公式分別計(jì)算出概率,得概率分布列,由公式計(jì)算出期望.【詳解】解:(1)據(jù)題意,得所以(2)據(jù)表1分析知,從所有產(chǎn)品中隨機(jī)抽一件是一等品、二等品、三等品的概率分別為.隨機(jī)變量的所有取值為240,300,360,420,480.隨機(jī)變量的分布列為240300360420480所以(元)【點(diǎn)睛】本題考查頻率分布直方圖,頻數(shù)分布表,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望,解題時(shí)掌握性質(zhì):頻率分布直方圖中所有頻率和為1.本題考查學(xué)生的數(shù)據(jù)處理能力,屬于中檔題.18、(1)見解析;(2)【解析】

(1)利用余弦定理化簡(jiǎn)已知條件,由此證得(2)利用正弦定理化簡(jiǎn)(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點(diǎn)睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.19、(1)(2)直線恒過定點(diǎn),詳見解析【解析】

(1)依題意由橢圓的簡(jiǎn)單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點(diǎn)的坐標(biāo),同理可求出點(diǎn)的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡(jiǎn)成點(diǎn)斜式,即可求出定點(diǎn)坐標(biāo).【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當(dāng)時(shí),由有.∴,同理,又∴,當(dāng)時(shí),∴直線的方程為∴直線恒過定點(diǎn),當(dāng)時(shí),此時(shí)也過定點(diǎn)..綜上:直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點(diǎn)問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于難題.20、(1),;(2)當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【解析】

(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.21、(1);(2).【解析】

(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點(diǎn)參數(shù)和,再利用M點(diǎn)的參數(shù)為A、B兩點(diǎn)參數(shù)和的一半即可求M的坐標(biāo);(2)利用直線參數(shù)方程的幾何意義得到,再利用計(jì)算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當(dāng)時(shí),將(為參數(shù))代入得,設(shè)直線l上A、B兩點(diǎn)所對(duì)應(yīng)的參數(shù)為,中點(diǎn)M所對(duì)應(yīng)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論