江蘇省蘇州一中2024屆高三最后一模數(shù)學(xué)試題含解析_第1頁
江蘇省蘇州一中2024屆高三最后一模數(shù)學(xué)試題含解析_第2頁
江蘇省蘇州一中2024屆高三最后一模數(shù)學(xué)試題含解析_第3頁
江蘇省蘇州一中2024屆高三最后一模數(shù)學(xué)試題含解析_第4頁
江蘇省蘇州一中2024屆高三最后一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省蘇州一中2024屆高三最后一模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線:過雙曲線的一個(gè)焦點(diǎn)且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.3.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.14.已知橢圓的右焦點(diǎn)為F,左頂點(diǎn)為A,點(diǎn)P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.5.在中,,則=()A. B.C. D.6.若集合,則=()A. B. C. D.7.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.8.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.9.的展開式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.8010.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.11.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.12.方程的實(shí)數(shù)根叫作函數(shù)的“新駐點(diǎn)”,如果函數(shù)的“新駐點(diǎn)”為,那么滿足()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,則_________.14.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為__________.15.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.16.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點(diǎn),則的面積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進(jìn)行對比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達(dá)到90億元,預(yù)測下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e18.(12分)2018年反映社會現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對其進(jìn)行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進(jìn)行第二次檢測.第一次檢測時(shí),三類劑型,,合格的概率分別為,,,第二次檢測時(shí),三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨(dú)立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.19.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)若在上單調(diào)遞增,且求c的最大值.21.(12分)已知數(shù)列滿足,,其前n項(xiàng)和為.(1)通過計(jì)算,,,猜想并證明數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.22.(10分)對于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)直線:過雙曲線的一個(gè)焦點(diǎn),得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因?yàn)橹本€:過雙曲線的一個(gè)焦點(diǎn),所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、B【解析】

由三視圖判斷出原圖,將幾何體補(bǔ)形為長方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.3、A【解析】

由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡單題.4、C【解析】

不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力.5、B【解析】

在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.6、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.7、A【解析】

首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè),具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1____,__1__,____1.剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè).故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題8、B【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【點(diǎn)睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).9、B【解析】

展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開式中含的項(xiàng)是由的展開式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.10、A【解析】

根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)?,,所以故選:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.11、A【解析】

根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A【點(diǎn)睛】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.12、D【解析】

由題設(shè)中所給的定義,方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,根據(jù)零點(diǎn)存在定理即可求出的大致范圍【詳解】解:由題意方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,對于函數(shù),由于,,設(shè),該函數(shù)在為增函數(shù),,,在上有零點(diǎn),故函數(shù)的“新駐點(diǎn)”為,那么故選:.【點(diǎn)睛】本題是一個(gè)新定義的題,理解定義,分別建立方程解出存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,屬于基礎(chǔ)題..二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.14、20,21【解析】

由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.15、【解析】

通過雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.16、【解析】

根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】

(1)由相關(guān)系數(shù)求出兩個(gè)系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識,考查統(tǒng)計(jì)與概率思想、分類與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預(yù)測下一年的研發(fā)資金投入量約是32.99億元【點(diǎn)睛】本小題主要考查拋物線的定義、拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性18、(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,服從二項(xiàng)分布,利用二項(xiàng)分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測后合格的概率分別為,,,由題意,,.【點(diǎn)睛】本題考查相關(guān)系數(shù)的求解,考查二項(xiàng)分布的期望,是中檔題.19、(1);(2)【解析】

(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點(diǎn)睛】本題考查運(yùn)用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運(yùn)用其公式,合理地選擇進(jìn)行邊角互化,屬于基礎(chǔ)題.20、(1)見解析(2)2【解析】

(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點(diǎn)問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進(jìn)而求解.【詳解】(1)當(dāng)時(shí),,定義域?yàn)?由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時(shí),;當(dāng)時(shí),,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時(shí),直線和函數(shù)的圖象有兩個(gè)交點(diǎn),即函數(shù)有兩個(gè)零點(diǎn);當(dāng)或,即或時(shí),直線和函數(shù)的圖象有一個(gè)交點(diǎn),即函數(shù)有一個(gè)零點(diǎn);當(dāng)即時(shí),直線與函數(shù)的象沒有交點(diǎn),即函數(shù)無零點(diǎn).(2)因?yàn)樵谏蠁握{(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時(shí),,故,單調(diào)遞減,不符合題意;③若,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,由,得,設(shè),則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,所以,又,所以,即c的最大值為2.【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)研究函數(shù)的零點(diǎn)問題,考查利用導(dǎo)函數(shù)求最值,考查運(yùn)算能力與分類討論思想.21、(1),證明見解析;(2)【解析】

(1)首先利用賦值法求出的值,進(jìn)一步利用定義求出數(shù)列的通項(xiàng)公式;(2)首先利用疊乘法求出數(shù)列的通項(xiàng)公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論