版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江省哈爾濱市第17中學(xué)2024年中考數(shù)學(xué)全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.一個兩位數(shù),它的十位數(shù)字是3,個位數(shù)字是拋擲一枚質(zhì)地均勻的骰子(六個面分別標(biāo)有數(shù)字1﹣6)朝上一面的數(shù)字,任意拋擲這枚骰子一次,得到的兩位數(shù)是3的倍數(shù)的概率等于()A. B. C. D.2.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)23.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m4.下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個圖形中一共有3個菱形,第②個圖形中一共有7個菱形,第③個圖形中一共有13個菱形,…,按此規(guī)律排列下去,第⑨個圖形中菱形的個數(shù)為()A.73 B.81 C.91 D.1095.如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB,AD=2,BD=6,則邊AC的長為()A.2 B.4 C.6 D.86.在一次數(shù)學(xué)答題比賽中,五位同學(xué)答對題目的個數(shù)分別為7,5,3,5,10,則關(guān)于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.67.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤48.在平面直角坐標(biāo)系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能圍成正方體的位置是()A.① B.② C.③ D.④10.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.2017年5月5日我國自主研發(fā)的大型飛機C919成功首飛,如圖給出了一種機翼的示意圖,用含有m、n的式子表示AB的長為______.12.已知二次函數(shù)y=ax2+bx(a≠0)的最小值是﹣3,若關(guān)于x的一元二次方程ax2+bx+c=0有實數(shù)根,則c的最大值是_____.13.如圖,在平面直角坐標(biāo)系中,點P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.14.如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.15.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點O,其擺放方式如圖所示,則∠AOB等于______度.16.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.三、解答題(共8題,共72分)17.(8分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.求反比例函數(shù)y=的表達式;求點B的坐標(biāo);求△OAP的面積.18.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.19.(8分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達式;設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?20.(8分)為評估九年級學(xué)生的體育成績情況,某校九年級500名學(xué)生全部參加了“中考體育模擬考試”,隨機抽取了部分學(xué)生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數(shù)分布直方圖:成績x分人數(shù)頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學(xué)生的成績;(2)通過計算將頻數(shù)分布直方圖補充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù).21.(8分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對?并說明理由.22.(10分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.23.(12分)從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.24.如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
直接得出兩位數(shù)是3的倍數(shù)的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質(zhì)地均勻的骰子,其六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,十位數(shù)為3,則兩位數(shù)是3的倍數(shù)的個數(shù)為2.∴得到的兩位數(shù)是3的倍數(shù)的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關(guān)鍵是根據(jù)題意找出兩位數(shù)是3的倍數(shù)的個數(shù)再運用概率公式解答即可.2、A【解析】
根據(jù)“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關(guān)鍵.3、D【解析】
解:設(shè)小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.4、C【解析】試題解析:第①個圖形中一共有3個菱形,3=12+2;第②個圖形中共有7個菱形,7=22+3;第③個圖形中共有13個菱形,13=32+4;…,第n個圖形中菱形的個數(shù)為:n2+n+1;第⑨個圖形中菱形的個數(shù)92+9+1=1.故選C.考點:圖形的變化規(guī)律.5、B【解析】
證明△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)可推導(dǎo)得出AC2=AD?AB,由此即可解決問題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點睛】本題考查相似三角形的判定和性質(zhì)、解題的關(guān)鍵是正確尋找相似三角形解決問題.6、D【解析】
根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關(guān)鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.7、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.8、C【解析】:∵點的橫縱坐標(biāo)均為負(fù)數(shù),∴點(-1,-2)所在的象限是第三象限,故選C9、A【解析】
由平面圖形的折疊及正方體的表面展開圖的特點解題.【詳解】將圖1的正方形放在圖2中的①的位置出現(xiàn)重疊的面,所以不能圍成正方體,故選A.【點睛】本題考查了展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形.注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.10、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內(nèi)角與外角;三角形內(nèi)角和定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
過點C作CE⊥CF延長BA交CE于點E,先求得DF的長,可得到AE的長,最后可求得AB的長.【詳解】解:延長BA交CE于點E,設(shè)CF⊥BF于點F,如圖所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案為:.【點睛】此題考查解直角三角形的應(yīng)用,解題的關(guān)鍵在于做輔助線.12、3【解析】
由一元二次方程ax2+bx+c=0有實數(shù)根,可得y=ax2+bx(a≠0)和y=-c有交點,由此即可解答.【詳解】∵一元二次方程ax2+bx+c=0有實數(shù)根,∴拋物線y=ax2+bx(a≠0)和直線y=-c有交點,∴-c≥-3,即c≤3,∴c的最大值為3.故答案為:3.【點睛】本題考查了一元二次方程與二次函數(shù),根據(jù)一元二次方程有實數(shù)根得到拋物線y=ax2+bx(a≠0)和直線y=-c有交點是解決問題的關(guān)鍵.13、【解析】
認(rèn)真審題,根據(jù)垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當(dāng)PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.14、.【解析】
探究規(guī)律,利用規(guī)律即可解決問題.【詳解】∵∠MON=45°,∴△C2B2C2為等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的邊長為2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案為2-.【點睛】本題考查規(guī)律型問題,解題的關(guān)鍵是學(xué)會探究規(guī)律的方法,學(xué)會利用規(guī)律解決問題,屬于中考常考題型.15、108°【解析】
如圖,易得△OCD為等腰三角形,根據(jù)正五邊形內(nèi)角度數(shù)可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【詳解】∵五邊形是正五邊形,∴每一個內(nèi)角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【點睛】本題考查正多邊形的內(nèi)角計算,分析出△OCD是等腰三角形,然后求出頂角是關(guān)鍵.16、18【解析】
三角形的重心是三條中線的交點,根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強,對學(xué)生要求較高.三、解答題(共8題,共72分)17、(1)反比例函數(shù)解析式為y=;(2)點B的坐標(biāo)為(9,3);(3)△OAP的面積=1.【解析】
(1)將點A的坐標(biāo)代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點B的坐標(biāo);(3)先根據(jù)點B坐標(biāo)得出OB所在直線解析式,從而求得直線與雙曲線交點P的坐標(biāo),再利用割補法求解可得.【詳解】(1)將點A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點A作AC⊥x軸于點C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點B的坐標(biāo)為(9,3);(3)∵點B坐標(biāo)為(9,3),∴OB所在直線解析式為y=x,由可得點P坐標(biāo)為(6,2),(負(fù)值舍去),過點P作PD⊥x軸,延長DP交AB于點E,則點E坐標(biāo)為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.【點睛】本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點的坐標(biāo)特征、正確添加輔助線是解題的關(guān)鍵.18、(1)3+【解析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.19、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】
(1)用待定系數(shù)法求一次函數(shù)的表達式;(2)利用利潤的定義,求與之間的函數(shù)表達式;(3)利用二次函數(shù)的性質(zhì)求極值.【詳解】解:(1)設(shè),由題意,得,解得,∴所求函數(shù)表達式為.(2).(3),其中,∵,∴當(dāng)時,隨的增大而增大,當(dāng)時,隨的增大而減小,當(dāng)售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應(yīng)用.20、(1)50;(2)詳見解析;(3)220.【解析】
(1)利用1組的人數(shù)除以1組的頻率可求此次抽查了多少名學(xué)生的成績;(2)根據(jù)總數(shù)乘以3組的頻率可求a,用50減去其它各組的頻數(shù)即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數(shù)分布直方圖補充完整;(3)先得到成績優(yōu)秀的頻率,再乘以500即可求解.【詳解】解:(1)4÷0.08=50(名).答:此次抽查了50名學(xué)生的成績;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如圖所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù)是220名.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表。21、小亮說的對,理由見解析【解析】
先根據(jù)完全平方公式和去括號法則計算,再合并同類項,最后代入計算即可求解.【詳解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,當(dāng)x=時,原式=+7=7;當(dāng)x=﹣時,原式=+7=7.故小亮說的對.【點睛】本題考查完全平方公式和去括號,解題的關(guān)鍵是明確完全平方公式和去括號的計算方法.22、(1)詳見解析;(2)4.【解析】試題分析:(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結(jié)OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理團隊協(xié)作
- 租期將滿:場地管理與維護
- 汽車展廳木地板安裝合同
- 2025航空貨物運輸合同范本
- 個性化定制增值服務(wù)承諾書
- 2025公司辦公室沙發(fā)定制合同
- 生物科技公司藥師合同范本
- 社會科學(xué)計量變更方法
- 2024年醫(yī)療機構(gòu)與醫(yī)護人員勞動關(guān)系合同范本3篇
- 2025版智能電網(wǎng)設(shè)備研發(fā)與推廣合同范本3篇
- 2022公務(wù)員錄用體檢操作手冊(試行)
- 2023-2024學(xué)年江西省小學(xué)語文六年級期末??伎荚囶}附參考答案和詳細(xì)解析
- 2023-2024學(xué)年廣西壯族自治區(qū)南寧市小學(xué)語文五年級期末高分試題附參考答案和詳細(xì)解析
- 山東省菏澤市高職單招2023年綜合素質(zhì)自考測試卷(含答案)
- 中國兒童注意缺陷多動障礙(ADHD)防治指南
- 強力皮帶運行危險點分析及預(yù)控措施
- 基于STM32的可遙控智能跟隨小車的設(shè)計與實現(xiàn)-設(shè)計應(yīng)用
- DB44T 1315-2014物業(yè)服務(wù) 檔案管理規(guī)范
- 基本醫(yī)療保險異地就醫(yī)登記備案申請表
- 非線性光纖光學(xué)六偏振效應(yīng)PPT
- 愛國人物的歷史故事整理
評論
0/150
提交評論