版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈爾濱市南崗區(qū)市級名校2023-2024學年中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列幾何體中,俯視圖為三角形的是()A. B. C. D.2.已知實數(shù)a、b滿足,則A. B. C. D.3.關(guān)于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±14.在△ABC中,∠C=90°,,那么∠B的度數(shù)為()A.60° B.45° C.30° D.30°或60°5.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.6.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.7.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n8.如圖,已知射線OM,以O(shè)為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°9.計算﹣2+3的結(jié)果是()A.1 B.﹣1 C.﹣5 D.﹣610.如圖所示的幾何體是一個圓錐,下面有關(guān)它的三視圖的結(jié)論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,拋物線y=﹣x2+4x與x軸交于點A,點M是x軸上方拋物線上一點,過點M作MP⊥x軸于點P,以MP為對角線作矩形MNPQ,連結(jié)NQ,則對角線NQ的最大值為_________.12.若m、n是方程x2+2018x﹣1=0的兩個根,則m2n+mn2﹣mn=_________.13.化簡代數(shù)式(x+1+)÷,正確的結(jié)果為_____.14.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側(cè)面展開圖的面積為.15.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)16.如圖,AB為⊙O的直徑,BC為⊙O的弦,點D是劣弧AC上一點,若點E在直徑AB另一側(cè)的半圓上,且∠AED=27°,則∠BCD的度數(shù)為_______.17.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當乙車到達A地的時候,甲車與A地的距離為_____千米.三、解答題(共7小題,滿分69分)18.(10分)“千年古都,大美西安”.某校數(shù)學興趣小組就“最想去的西安旅游景點”隨機調(diào)查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應(yīng)的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B”的學生人數(shù).19.(5分)解不等式組:20.(8分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標;(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,F(xiàn)的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數(shù)關(guān)系式(3)若點M在直線OP上,在平面內(nèi)是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標。若不存在請說明理由。21.(10分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,求AE的長.22.(10分)如圖,圓內(nèi)接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點.求證:PE⊥PF.23.(12分)(1)計算:;(2)解不等式組:24.(14分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
俯視圖是從上面所看到的圖形,可根據(jù)各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環(huán),故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關(guān)鍵.2、C【解析】
根據(jù)不等式的性質(zhì)進行判斷.【詳解】解:A、,但不一定成立,例如:,故本選項錯誤;
B、,但不一定成立,例如:,,故本選項錯誤;
C、時,成立,故本選項正確;
D、時,成立,則不一定成立,故本選項錯誤;
故選C.【點睛】考查了不等式的性質(zhì)要認真弄清不等式的基本性質(zhì)與等式的基本性質(zhì)的異同,特別是在不等式兩邊同乘以或除以同一個數(shù)時,不僅要考慮這個數(shù)不等于0,而且必須先確定這個數(shù)是正數(shù)還是負數(shù),如果是負數(shù),不等號的方向必須改變.3、C【解析】
根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是熟練運用一元二次方程的定義,本題屬于基礎(chǔ)題型.4、C【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質(zhì),熟記特殊角的三角函數(shù)值是解答本題的突破點.5、A【解析】設(shè)乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關(guān)系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.6、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關(guān)鍵.7、D【解析】
根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關(guān)鍵.8、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì),可求得∠AOB的度數(shù).【詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握等邊三角形的判定與性質(zhì).9、A【解析】
根據(jù)異號兩數(shù)相加的法則進行計算即可.【詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點睛】本題主要考查了異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.10、D【解析】
先得到圓錐的三視圖,再根據(jù)中心對稱圖形和軸對稱圖形的定義求解即可.【詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;
B、左視圖不是中心對稱圖形,故B錯誤;
C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;
D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.
故選:D.【點睛】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當MP最大時,NQ就最大.∵點M是拋物線在軸上方部分圖象上的一點,且MP⊥軸于點P,∴當點M是拋物線的頂點時,MP的值最大.∵,∴拋物線的頂點坐標為(2,4),∴當點M的坐標為(2,4)時,MP最大=4,∴對角線NQ的最大值為4.12、1【解析】
根據(jù)根與系數(shù)的關(guān)系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整體代入的方法計算.【詳解】解:∵m、n是方程x2+2018x﹣1=0的兩個根,m+n=-2018,=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案為:1.【點睛】本題考查了根與系數(shù)的關(guān)系,如果一元二次方程ax2+bx+c=0的兩根分別為x1與x2,則13、2x【解析】
根據(jù)分式的運算法則計算即可求解.【詳解】(x+1+)÷===2x.故答案為2x.【點睛】本題考查了分式的混合運算,熟知分式的混合運算順序及運算法則是解答本題的關(guān)鍵.14、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側(cè)面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.15、①②④【解析】
由正方形的性質(zhì)和相似三角形的判定與性質(zhì),即可得出結(jié)論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點睛】本題考查的正方形的性質(zhì),等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì),解答此題的關(guān)鍵是熟練掌握性質(zhì)和定理.16、117°【解析】
連接AD,BD,利用圓周角定理解答即可.【詳解】連接AD,BD,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案為117°【點睛】此題考查圓周角定理,關(guān)鍵是根據(jù)圓周角定理解答.17、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當相遇后車共行駛了720千米時,甲車到達B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當甲車到達B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當乙車到達A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數(shù)圖象解決實際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標表示的意義,抓住交點,起點.終點等關(guān)鍵點,理解問題的發(fā)展過程,將實際問題抽象為數(shù)學問題,從而將這個數(shù)學問題變化為解答實際問題.三、解答題(共7小題,滿分69分)18、(1)40;(2)想去D景點的人數(shù)是8,圓心角度數(shù)是72°;(3)280.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學生總?cè)藬?shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去B景點的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40-8-14-4-6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學生人數(shù)為280人.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也考查了扇形統(tǒng)計圖和利用樣本估計總體.19、﹣9<x<1.【解析】
先求每一個不等式的解集,然后找出它們的公共部分,即可得出答案.【詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【點睛】此題考查了解一元一次不等式組,用到的知識點是解一元一次不等式組的步驟,關(guān)鍵是找出兩個不等式解集的公共部分.20、(1);(2);(3)【解析】
(1)聯(lián)立兩直線解析式,求出交點P坐標即可;(2)由F坐標確定出OF的長,得到E的橫坐標為a,代入直線OP解析式表示出E縱坐標,即為EF的長,分兩種情況考慮:當時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數(shù)關(guān)系式;當時,重合部分為直角梯形面積,求出S與a函數(shù)關(guān)系式.(3)根據(jù)(1)所求,先求得A點坐標,再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯(lián)立得:,解得:;∴P的坐標為;(2)分兩種情況考慮:當時,由F坐標為(a,0),得到OF=a,把E橫坐標為a,代入得:即此時當時,重合的面積就是梯形面積,F(xiàn)點的橫坐標為a,所以E點縱坐標為M點橫坐標為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標為(4,0)則AP=,則PM=2又∵OP=∴點P向左平移3個單位在向下平移可以得到M1點P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點,且坐標是【點睛】本題考查一次函數(shù)綜合題、勾股定理以及逆定理、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.21、(1);(2)詳見解析;(3)AE=.【解析】
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當時,S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)債券發(fā)行合同4篇
- 2025年度個人房產(chǎn)買賣合同違約金計算范本4篇
- 教育變革下的自然課堂-以小學生為對象的探究教學法應(yīng)用
- 教育技術(shù)助力的小學生圖書引導策略匯報
- 個人養(yǎng)老保險購買合同2024年度3篇
- 二零二五版互聯(lián)網(wǎng)金融平臺用戶協(xié)議與風險提示2篇
- 二零二五年度高端不銹鋼制品制造與安裝服務(wù)合同3篇
- 二零二五版國際旅游導游勞動合同模板4篇
- 二零二五年度職業(yè)教育院校教師招聘勞動合同樣本3篇
- 2025年度人工智能助手軟件開發(fā)及商業(yè)化推廣合同4篇
- 2024年公需科目培訓考試題及答案
- 2024年江蘇鑫財國有資產(chǎn)運營有限公司招聘筆試沖刺題(帶答案解析)
- 2024年遼寧石化職業(yè)技術(shù)學院單招職業(yè)適應(yīng)性測試題庫含答案
- 廣西桂林市2023-2024學年高二上學期期末考試物理試卷
- 財務(wù)指標與財務(wù)管理
- 部編版二年級下冊道德與法治第三單元《綠色小衛(wèi)士》全部教案
- 【京東倉庫出庫作業(yè)優(yōu)化設(shè)計13000字(論文)】
- 保安春節(jié)安全生產(chǎn)培訓
- 初一語文上冊基礎(chǔ)知識訓練及答案(5篇)
- 血液透析水處理系統(tǒng)演示
- GB/T 27030-2006合格評定第三方符合性標志的通用要求
評論
0/150
提交評論