![陜西省西安鐵一中國際合作學(xué)校重點中學(xué)2023-2024學(xué)年高考考前模擬數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view14/M00/2C/05/wKhkGWY_XxmAZ0vTAAHd6-4OQ1A035.jpg)
![陜西省西安鐵一中國際合作學(xué)校重點中學(xué)2023-2024學(xué)年高考考前模擬數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view14/M00/2C/05/wKhkGWY_XxmAZ0vTAAHd6-4OQ1A0352.jpg)
![陜西省西安鐵一中國際合作學(xué)校重點中學(xué)2023-2024學(xué)年高考考前模擬數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view14/M00/2C/05/wKhkGWY_XxmAZ0vTAAHd6-4OQ1A0353.jpg)
![陜西省西安鐵一中國際合作學(xué)校重點中學(xué)2023-2024學(xué)年高考考前模擬數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view14/M00/2C/05/wKhkGWY_XxmAZ0vTAAHd6-4OQ1A0354.jpg)
![陜西省西安鐵一中國際合作學(xué)校重點中學(xué)2023-2024學(xué)年高考考前模擬數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view14/M00/2C/05/wKhkGWY_XxmAZ0vTAAHd6-4OQ1A0355.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省西安鐵一中國際合作學(xué)校重點中學(xué)2023-2024學(xué)年高考考前模擬數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.2.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.3.雙曲線x2a2A.y=±2x B.y=±3x4.已知向量,(其中為實數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定6.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點有無窮多個7.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12808.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.10.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.611.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對12.已知向量,,則向量在向量上的投影是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標(biāo)為______.14.已知,,,的夾角為30°,,則_________.15.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.16.將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.18.(12分)在平面直角坐標(biāo)系中,橢圓:的右焦點為(,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時,,求實數(shù);⑶試問的值是否與的大小無關(guān),并證明你的結(jié)論.19.(12分)健身館某項目收費標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標(biāo)準(zhǔn)如下:現(xiàn)隨機抽取了100為會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計1位會員至少消費兩次的概率(2)某會員消費4次,求這4次消費獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望20.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.21.(12分)設(shè)為坐標(biāo)原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設(shè)過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.22.(10分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設(shè),點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖2、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.3、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a24、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎(chǔ)知識;考查運算求解能力,推理論證能力,應(yīng)用意識.5、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.6、D【解析】
運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.7、A【解析】
根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).8、B【解析】
分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.9、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.10、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.11、A【解析】
首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結(jié)果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎(chǔ)題.12、A【解析】
先利用向量坐標(biāo)運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標(biāo)運算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標(biāo)準(zhǔn)方程為,,所以焦點坐標(biāo)為.故答案為:【點睛】本題考查了拋物線的焦點坐標(biāo),屬于簡單題.14、1【解析】
由求出,代入,進(jìn)行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題.15、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.16、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球?qū)⒙淙氪?,所以有,則.故本題應(yīng)填.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)先由正弦定理,得到,進(jìn)而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進(jìn)而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于??碱}型.18、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應(yīng)用,在于直線交橢圓兩交點M,N的橫坐標(biāo)為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當(dāng)斜率存在即時,可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達(dá)定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關(guān)試題解析:(1),得:,橢圓方程為(2)當(dāng)時,,得:,于是當(dāng)=時,,于是,得到(3)①當(dāng)=時,由(2)知②當(dāng)時,設(shè)直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關(guān)考點:(1)待定系數(shù)求橢圓方程;(2)橢圓簡單的幾何性質(zhì);(3)直線與圓錐曲線19、(1)(2)22.5(3)見解析,【解析】
(1)根據(jù)頻數(shù)計算頻率,得出概率;(2)根據(jù)優(yōu)惠標(biāo)準(zhǔn)計算平均利潤;(3)求出各種情況對應(yīng)的的值和概率,得出分布列,從而計算出數(shù)學(xué)期望.【詳解】解:(1)估計1位會員至少消費兩次的概率;(2)第1次消費利潤;第2次消費利潤;第3次消費利潤;第4次消費利潤;這4次消費獲得的平均利潤:(3)1次消費利潤是27,概率是;2次消費利潤是,概率是;3次消費利潤是,概率是;4次消費利潤是,概率是;由題意:故分布列為:0期望為:【點睛】本題考查概率、平均利潤、離散型隨機變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.20、(1);(2).【解析】
(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時,.【方法點睛】解三角形問題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進(jìn)行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進(jìn)行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進(jìn)行判斷,常用余弦定理、面積公式等.21、(1);(2)見解析【解析】
(1)根據(jù)點到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運算可得,即可證明.【詳解】(1)左頂點A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過點N且垂直于OP的直線過橢圓C的右焦點F.【點睛】本題考查了橢圓方程的求法,直線和橢圓的關(guān)系,向量的運算,考查了運算求解能力和轉(zhuǎn)化與化歸能力,屬于中檔題.22、(1)見解析;(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 摩托車裝備與配件市場分析考核試卷
- 事業(yè)用工合同范本
- 中山吊車租賃合同范本
- 劇本腳本改編合同范本
- 農(nóng)資長期供貨合同范例
- 2025-2030年口腔軟牽拉器企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 價格磋商合同范本
- 2025-2030年地下水循環(huán)模擬軟件行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年園藝智能土壤檢測行業(yè)跨境出海戰(zhàn)略研究報告
- 專利實施使用合同范本
- 新起點英語二年級下冊全冊教案
- 《紅星照耀中國》整本書閱讀教學(xué)設(shè)計-統(tǒng)編版語文八年級上冊
- 【幼兒園戶外體育活動材料投放的現(xiàn)狀調(diào)查報告(定量論文)8700字】
- 帶狀皰疹與帶狀皰疹后遺神經(jīng)痛(HZ與PHN)
- JC-T 746-2023 混凝土瓦標(biāo)準(zhǔn)規(guī)范
- 漢密爾頓抑郁和焦慮量表
- 前列腺癌的診斷與治療
- 人教版八年級數(shù)學(xué)初中數(shù)學(xué)《平行四邊形》單元教材教學(xué)分析
- EPC項目設(shè)計及施工的配合
- 年產(chǎn)5萬噸1,4-丁二醇的工藝流程設(shè)計
- (高清版)TDT 1037-2013 土地整治重大項目可行性研究報告編制規(guī)程
評論
0/150
提交評論