![江蘇省常州市七校2023-2024學年中考數學對點突破模擬試卷含解析_第1頁](http://file4.renrendoc.com/view14/M09/0C/2A/wKhkGWZAMvWAMmdiAAHQpTgliuM849.jpg)
![江蘇省常州市七校2023-2024學年中考數學對點突破模擬試卷含解析_第2頁](http://file4.renrendoc.com/view14/M09/0C/2A/wKhkGWZAMvWAMmdiAAHQpTgliuM8492.jpg)
![江蘇省常州市七校2023-2024學年中考數學對點突破模擬試卷含解析_第3頁](http://file4.renrendoc.com/view14/M09/0C/2A/wKhkGWZAMvWAMmdiAAHQpTgliuM8493.jpg)
![江蘇省常州市七校2023-2024學年中考數學對點突破模擬試卷含解析_第4頁](http://file4.renrendoc.com/view14/M09/0C/2A/wKhkGWZAMvWAMmdiAAHQpTgliuM8494.jpg)
![江蘇省常州市七校2023-2024學年中考數學對點突破模擬試卷含解析_第5頁](http://file4.renrendoc.com/view14/M09/0C/2A/wKhkGWZAMvWAMmdiAAHQpTgliuM8495.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省常州市七校2023-2024學年中考數學對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.2.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.3.已知一次函數且隨的增大而增大,那么它的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數解C.當時,方程有兩個相等的實數解D.當時,方程總有兩個不相等的實數解5.如圖的平面圖形繞直線l旋轉一周,可以得到的立體圖形是()A. B. C. D.6.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數為()A.0個 B.1個 C.2個 D.3個7.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°8.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.39.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S210.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結論錯誤的是()A.AEEC=BEED B.AE11.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線12.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,BD和CE是△ABC的兩條角平分線.若∠A=52°,則∠1+∠2的度數為_______.14.如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉90°至圖②位置,以此類推,這樣連續(xù)旋轉2017次.若AB=4,AD=3,則頂點A在整個旋轉過程中所經過的路徑總長為_____.15.已知雙曲線經過點(-1,2),那么k的值等于_______.16.已知關于x的一元二次方程(a-1)x2-2x+1=0有兩個不相等的實數根,則a的取值范圍是_______________.17.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).18.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結果保留π).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當點P與E重合時,求PDPC②如圖3,設∠DAP的平分線AF交直線BP于F,當CE=1,PDPC20.(6分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數分布直方圖,根據圖1提供的信息,補全圖2中頻數分布直方圖;在這10天中,最低氣溫的眾數是____,中位數是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.21.(6分)某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.22.(8分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統計圖反映了學生報名參加夏令營的情況,請你根據圖中的信息回答下列問題:該年級報名參加丙組的人數為;該年級報名參加本次活動的總人數,并補全頻數分布直方圖;根據實際情況,需從甲組抽調部分同學到丙組,使丙組人數是甲組人數的3倍,應從甲組抽調多少名學生到丙組?23.(8分)某商場服裝部分為了解服裝的銷售情況,統計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據統計的這組銷售額的數據,繪制出如下的統計圖①和圖②,請根據相關信息,解答下列問題:(1)該商場服裝營業(yè)員的人數為,圖①中m的值為;(2)求統計的這組銷售額數據的平均數、眾數和中位數.24.(10分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側,連接OP.求證:AP=BQ;當BQ=時,求的長(結果保留);若△APO的外心在扇形COD的內部,求OC的取值范圍.25.(10分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?26.(12分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當的降價措施.經調査發(fā)現,每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?27.(12分)為響應“植樹造林、造福后人”的號召,某班組織部分同學義務植樹棵,由于同學們的積極參與,實際參加的人數比原計劃增加了,結果每人比原計劃少栽了棵,問實際有多少人參加了這次植樹活動?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.2、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.3、B【解析】
根據一次函數的性質:k>0,y隨x的增大而增大;k<0,y隨x的增大而減小,進行解答即可.【詳解】解:∵一次函數y=kx-3且y隨x的增大而增大,
∴它的圖象經過一、三、四象限,
∴不經過第二象限,
故選:B.【點睛】本題考查了一次函數的性質,掌握一次函數所經過的象限與k、b的值有關是解題的關鍵.4、C【解析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數解,當且時,方程有兩個不相等的實數解.綜上所述,說法C正確.故選C.5、B【解析】
根據面動成體以及長方形繞一邊所在直線旋轉一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉得到的立體圖形是解題關鍵.6、A【解析】解:①由函數圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.7、C【解析】
根據題意,求出∠AEM,再根據AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內角和與兩條直線平行內錯角相等.8、C【解析】
連接EG、FG,根據斜邊中線長為斜邊一半的性質即可求得EG=FG=BC,因為D是EF中點,根據等腰三角形三線合一的性質可得GD⊥EF,再根據勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質、勾股定理以及等腰三角形三線合一的性質,本題中根據等腰三角形三線合一的性質求得GD⊥EF是解題的關鍵.9、D【解析】
根據題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.10、A【解析】
利用平行線的性質以及相似三角形的性質一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質,相似三角形的判定和性質,平行線分線段成比例定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.11、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.12、B【解析】
根據旋轉的性質可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,主要利用了旋轉前后對應邊相等以及旋轉角的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的兩條角平分線,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案為64°.點睛:本題考查的是三角形內角和定理、角平分線的定義,掌握三角形內角和等于180°是解題的關鍵.14、【解析】分析:首先求得每一次轉動的路線的長,發(fā)現每4次循環(huán),找到規(guī)律然后計算即可.詳解:∵AB=4,BC=3,∴AC=BD=5,轉動一次A的路線長是:轉動第二次的路線長是:轉動第三次的路線長是:轉動第四次的路線長是:0,以此類推,每四次循環(huán),故頂點A轉動四次經過的路線長為:∵2017÷4=504…1,∴頂點A轉動四次經過的路線長為:故答案為點睛:考查旋轉的性質和弧長公式,熟記弧長公式是解題的關鍵.15、-1【解析】
分析:根據點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.16、a<2且a≠1.【解析】
利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【詳解】試題解析:∵關于x的一元二次方程(a-1)x2-2x+l=0有兩個不相等的實數根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個不等式得,a<2,又∵二次項系數是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【點睛】本題考查的是一元二次方程根的判別式,根據方程有兩不等的實數根,得到判別式大于零,求出a的取值范圍,同時方程是一元二次方程,二次項系數不為零.17、①②③【解析】
依據∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據△DFP∽△BPH,可得,再根據BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據CP=CD,即可得出PD2=PH?CD;根據三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質、相似三角形的判定與性質、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質定理與判定定理是解題的關鍵.18、3【解析】
過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)①32【解析】
(1)過點A作AF⊥BP于F,根據等腰三角形的性質得到BF=BP,易證Rt△ABF∽Rt△BCE,根據相似三角形的性質得到ABBC=BF(2)①延長BP、AD交于點F,過點A作AG⊥BP于G,證明△ABG≌△BCP,根據全等三角形的性質得BG=CP,設BG=1,則PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延長BF、AD交于點G,過點A作AH⊥BE于H,證明△ABH≌△BCE,根據全等三角形的性質得BG=CP,設BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2【詳解】解:(1)過點A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴AB∴BP=32(2)①延長BP、AD交于點F,過點A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP設BG=1,則PG=PC=1∴BC=AB=5在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴PD②延長BF、AD交于點G,過點A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)設BH=BP=CE=1∵PDPC∴PG=72,BG=∵AB2=BH·BG∴AB=222∴AH=∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH為等腰直角三角形∴AF=【點睛】考查等腰三角形的性質,勾股定理,射影定理,平行線分線段成比例定理等,解題的關鍵是作出輔助線.難度較大.20、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】
(1)根據圖1找出8、9、10℃的天數,然后補全統計圖即可;(2)根據眾數的定義,找出出現頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數即為中位數;先求出平均數,再根據方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數在扇形統計圖中所占的度數,然后作出扇形統計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統計圖如圖;(2)根據條形統計圖,7℃出現的頻率最高,為3天,所以,眾數是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數為(7+8)=7.5;平均數為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數,×360°=72°,7℃的度數,×360°=108°,8℃的度數,×360°=72°,10℃的度數,×360°=72°,11℃的度數,×360°=36°,作出扇形統計圖如圖所示.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力.同時考查中位數、眾數的求法:給定n個數據,按從小到大排序,如果n為奇數,位于中間的那個數就是中位數;如果n為偶數,位于中間兩個數的平均數就是中位數.任何一組數據,都一定存在中位數的,但中位數不一定是這組數據量的數.給定一組數據,出現次數最多的那個數,稱為這組數據的眾數.21、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.【解析】分析:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據月毛利潤=月銷量×每噸的毛利潤可得函數解析式;②求出8<t≤12和12<t≤24時,月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據一次函數的性質可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當0<t≤8時,w=(2t+8)×=240;當8<t≤12時,w=(2t+8)(t+2)=2t2+12t+16;當12<t≤24時,w=(-t+44)(t+2)=-t2+42t+88;②當8<t≤12時,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12時,w隨t的增大而增大,當2(t+3)2-2=336時,解題t=10或t=-16(舍),當t=12時,w取得最大值,最大值為448,此時月銷量P=t+2在t=10時取得最小值12,在t=12時取得最大值14;當12<t≤24時,w=-t2+42t+88=-(t-21)2+529,當t=12時,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴當12<t≤17時,448<w≤513,此時P=t+2的最小值為14,最大值為19;綜上,此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.點睛:本題主要考查二次函數的應用,掌握待定系數法求函數解析式及根據相等關系列出分段函數的解析式是解題的前提,利用二次函數的性質求得336≤w≤513所對應的t的取值范圍是解題的關鍵.22、(1)21人;(2)10人,見解析(3)應從甲抽調1名學生到丙組【解析】(1)參加丙組的人數為21人;(2)21÷10%=10人,則乙組人數=10-21-11=10人,如圖:(3)設需從甲組抽調x名同學到丙組,根據題意得:3(11-x)=21+x解得x=1.答:應從甲抽調1名學生到丙組(1)直接根據條形統計圖獲得數據;(2)根據丙組的21人占總體的10%,即可計算總體人數,然后計算乙組的人數,補全統計圖;(3)設需從甲組抽調x名同學到丙組,根據丙組人數是甲組人數的3倍列方程求解23、(1)25;28;(2)平均數:1.2;眾數:3;中位數:1.【解析】
(1)觀察統計圖可得,該商場服裝部營業(yè)員人數為2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)計算出所有營業(yè)員的銷售總額除以營業(yè)員的總人數即可的平均數;觀察統計圖,根據眾數、中位數的定義即可得答案.【詳解】解:(1)根據條形圖2+5+7+8+3=25(人),
m=100-20-32-12-8=28;故答案為:25;28;(2)觀察條形統計圖,∵∴這組數據的平均數是1.2.∵在這組數據中,3出現了8次,出現的次數最多,∴這組數據的眾數是3.∵將這組數據按照由小到大的順序排列,其中處于中間位置的數是1,∴這組數據的中位數是1.【點睛】此題主要考查了平均數、眾數、中位數的統計意義以及利用樣本估計總體等知識.找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;平均數是指在一組數據中所有數據之和再除以數據的個數.24、(1)詳見解析;(2);(3)4<OC<1.【解析】
(1)連接OQ,由切線性質得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質即可得證.(2)由(1)中全等三角形性質得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據余弦定義可得cosB=,由特殊角的三角函數值可得∠B=30°,∠BOQ=60°,根據直角三角形的性質得OQ=4,結合題意可得∠QOD度數,由弧長公式即可求得答案.(3)由直角三角形性質可得△APO的外心是OA的中點,結合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設點M為Rt△APO的外心,則M為OA的中點,
∵OA=1,
∴OM=4,
∴當△APO的外心在扇形COD的內部時,OM<OC,
∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個人普通貨物運輸合同模板(三篇)
- 2025年二手房屋買賣合同范文(2篇)
- 2025年二人合伙開店協議經典版(三篇)
- 2025年五年級語文教學工作總結參考范文(二篇)
- 2025年個人房產抵押借款合同標準版本(三篇)
- 2025年五金配件訂購買賣合同(三篇)
- 2025年產品銷售合作協議(三篇)
- 2025年專利實施合同參考樣本(三篇)
- 歷史建筑修復外包合同
- 教育產業(yè)基地建設居間協議
- 和平精英電競賽事
- 熱應激的防與控
- 輸液港用無損傷針相關知識
- 高標準農田施工組織設計(全)
- 職業(yè)安全健康工作總結(2篇)
- 14S501-1 球墨鑄鐵單層井蓋及踏步施工
- YB 4022-1991耐火泥漿荷重軟化溫度試驗方法(示差-升溫法)
- 水土保持方案中沉沙池的布設技術
- 現代企業(yè)管理 (全套完整課件)
- 走進本土項目化設計-讀《PBL項目化學習設計》有感
- 高中語文日積月累23
評論
0/150
提交評論