版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京鼓樓區(qū)2024屆中考三模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個2.如圖是我市4月1日至7日一周內“日平均氣溫變化統(tǒng)計圖”,在這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.13;13 B.14;10 C.14;13 D.13;143.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米4.下列各數(shù)中負數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)35.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-26.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.7.如圖,⊙O的半徑為6,直徑CD過弦EF的中點G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.98.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(
)A. B. C. D.9.肥皂泡的泡壁厚度大約是0.00000071米,數(shù)字0.00000071用科學記數(shù)法表示為()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣810.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉30°后得到Rt△ADE,點B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.11.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:112.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.A、B兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時,兩車均勻速行駛,當甲到達B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時間t(小時)之間的圖象,則當甲第二次與乙相遇時,乙離B地的距離為_____千米.14.若關于x的方程kx2+2x﹣1=0有實數(shù)根,則k的取值范圍是_____.15.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.16.分解因式:3m2﹣6mn+3n2=_____.17.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.18.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.20.(6分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.21.(6分)(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.22.(8分)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣23.(8分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結論;如果不是,請說明理由24.(10分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.25.(10分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.26.(12分)計算:2cos30°+--()-227.(12分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.2、C【解析】
根據(jù)統(tǒng)計圖,利用眾數(shù)與中位數(shù)的概念即可得出答案.【詳解】從統(tǒng)計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數(shù)為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數(shù)為13故選:C.【點睛】本題主要考查中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的求法是解題的關鍵.3、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.4、B【解析】
首先利用相反數(shù),絕對值的意義,乘方計算方法計算化簡,進一步利用負數(shù)的意義判定即可.【詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【點睛】此題考查負數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計算方法計算化簡是解決問題的關鍵.5、A【解析】試題分析:根據(jù)角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A6、B【解析】
根據(jù)矩形的性質得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據(jù)勾股定理即可得到結論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質,勾股定理,熟練掌握折疊的性質是解題的關鍵.7、B【解析】
連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,
∴∠CFD=90°,
∴CF=CD?cos∠DCF=12×=,故選B.【點睛】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關鍵.8、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關鍵.9、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000071的小數(shù)點向或移動7位得到7.1,所以0.00000071用科學記數(shù)法表示為7.1×10﹣7,故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、A【解析】
先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關鍵.11、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.12、D【解析】
先利用鄰補角得到∠DCE=80°,然后根據(jù)平行線的性質求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點睛】本題考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
根據(jù)題意和函數(shù)圖象可以分別求得甲乙的速度,從而可以得到當甲第二次與乙相遇時,乙離B地的距離.【詳解】設甲的速度為akm/h,乙的速度為bkm/h,,解得,,設第二次甲追上乙的時間為m小時,100m﹣25(m﹣1)=600,解得,m=,∴當甲第二次與乙相遇時,乙離B地的距離為:25×(-1)=千米,故答案為.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質和數(shù)形結合的思想解答.14、k≥-1【解析】
首先討論當時,方程是一元一次方程,有實數(shù)根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數(shù)根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數(shù)根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.15、6.【解析】
作輔助線,根據(jù)反比例函數(shù)關系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質得OB與OA的比,由同高兩三角形面積的比等于對應底邊的比可以得出結論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數(shù)y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.16、3(m-n)2【解析】原式==故填:17、1【解析】
在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.
故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)紅球的頻率得到相應的等量關系.18、40°.【解析】
∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF20、(1)3+【解析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質、直角三角形斜邊中線定理,等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.21、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F(xiàn)為EB的中點.∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據(jù)勾股定理得:EF=FB=DC=.∵E是的中點,∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對角相等,再由OA=OC,利用等邊對等角得到一對角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行得到OC與AD平行,根據(jù)AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據(jù)E為弧AC的中點,得到弧AE=弧EC,利用等弧對等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點:角平分線定義,等腰三角形的性質,平行的判定和性質,切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計算,轉換思想的應用.22、【解析】
原式去括號合并得到最簡結果,把a與b的值代入計算即可求出值;【詳解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,當a=1、b=﹣時,原式=12+(﹣)2=1+=.【點睛】考查了整式的加減-化簡求值,以及非負數(shù)的性質,熟練掌握運算法則是解本題的關鍵.23、(1)見解析;(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析.【解析】分析:(1)由正方形的性質得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點為O;先證明△AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH與△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由如下:連接AC、EG,交點為O;如圖所示:∵四邊形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O為AC的中點,∵正方形的對角線互相平分,∴O為對角線AC、BD的交點,即O為正方形的中心.點睛:考查了正方形的性質與判定、全等三角形的判定與性質等知識;本題綜合性強,有一定難度,特別是(2)中,需要通過作輔助線證明三角形全等才能得出結果.24、(1)相切,理由見解析;(1)1.【解析】
(1)求出OD//AC,得到OD⊥BC,根據(jù)切線的判定得出即可;(1)根據(jù)勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.25、(1)詳見解析;(2)①67.5°;②90°.【解析】
(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2015年9月1日之前公司間的借貸合同
- 餐飲廚房員工合同范例
- 對公勞務合同范例版
- 商丘工學院《遙感影像處理與分析實驗》2023-2024學年第一學期期末試卷
- 國家征收土地合同范例
- 業(yè)務信息合同范例
- 購買合同和買賣合同范例
- 2024至2030年蛋黃保鮮劑項目投資價值分析報告
- 2024至2030年氧化鈦陶瓷項目投資價值分析報告
- 陜西藝術職業(yè)學院《工程造價軟件應用》2023-2024學年第一學期期末試卷
- 山東省建筑自動消防設施檢測收費標準
- 高血壓心臟病的護理查房
- 2023年4月自考11742商務溝通方法與技能試題及答案
- 食品試驗設計與統(tǒng)計分析期末復習資料
- 項目計劃書:3D數(shù)字設計和制造平臺創(chuàng)業(yè)方案
- 航空餐飲服務的注意事項
- DB42T 1144-2016燃氣用不銹鋼波紋軟管安裝及驗收規(guī)范
- 二級醫(yī)院規(guī)章制度匯編
- 2023-2024學年安徽省合肥市小學數(shù)學五年級上冊期末自測題
- GB/T 702-2017熱軋鋼棒尺寸、外形、重量及允許偏差
- 四年級上冊英語試題-Unit 12 Peter can jump high 湘少版(含答案)
評論
0/150
提交評論