版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年陜西省渭南三賢中學(xué)高考數(shù)學(xué)五模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.2.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1003.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.4.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.75.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.7.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科試卷講評順序表,若化學(xué)排在生物前面,數(shù)學(xué)與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種8.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.9.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.10.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.11.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}12.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為偶函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.關(guān)于函數(shù)的零點(diǎn),有下列三個(gè)命題:①當(dāng)時(shí),存在實(shí)數(shù)m,使函數(shù)恰有5個(gè)不同的零點(diǎn);②若,函數(shù)的零點(diǎn)不超過4個(gè),則;③對,,函數(shù)恰有4個(gè)不同的零點(diǎn),且這4個(gè)零點(diǎn)可以組成等差數(shù)列.其中,正確命題的序號是_______.14.在中,已知是的中點(diǎn),且,點(diǎn)滿足,則的取值范圍是_______.15.已知是定義在上的偶函數(shù),其導(dǎo)函數(shù)為.若時(shí),,則不等式的解集是___________.16.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記無窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項(xiàng)和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.18.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.19.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實(shí)數(shù),的值;(2)當(dāng)時(shí),若有兩個(gè)極值點(diǎn),,且,,若不等式恒成立,試求實(shí)數(shù)m的取值范圍.20.(12分)已知橢圓的離心率為,且過點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過右焦點(diǎn)作的平行線交橢圓于、兩個(gè)不同的點(diǎn),求的值.21.(12分)已知橢圓C的中心在坐標(biāo)原點(diǎn),其短半軸長為1,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個(gè)交點(diǎn)為,當(dāng)?shù)拿娣e最小時(shí),求的長.22.(10分)如圖,在正四棱柱中,,,過頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.2、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.3、D【解析】
過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)椋?,所以,即過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.4、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.5、B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.6、A【解析】
觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c(diǎn)睛】本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。7、B【解析】
利用分步計(jì)數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學(xué),生物4種,且化學(xué)排在生物前面,有種排法;第二步將數(shù)學(xué)和物理插入前4科除最后位置外的4個(gè)空擋中的2個(gè),有種排法,所以不同的排表方法共有種.選.【點(diǎn)睛】本題考查排列的應(yīng)用,不相鄰采用插空法求解,準(zhǔn)確分步是關(guān)鍵,是基礎(chǔ)題8、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.9、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.10、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.11、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.12、D【解析】
因?yàn)?,,所以且在上單調(diào)遞減,且所以,所以,又因?yàn)?,,所以,所?故選:D.【點(diǎn)睛】本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
根據(jù)偶函數(shù)的圖象關(guān)于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:當(dāng)時(shí)又因?yàn)闉榕己瘮?shù)可畫出的圖象,如下所示:可知當(dāng)時(shí)有5個(gè)不同的零點(diǎn);故①正確;若,函數(shù)的零點(diǎn)不超過4個(gè),即,與的交點(diǎn)不超過4個(gè),時(shí)恒成立又當(dāng)時(shí),在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點(diǎn)不超過個(gè),則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個(gè)不同的交點(diǎn)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確.故答案為:①②③【點(diǎn)睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.14、【解析】
由中點(diǎn)公式的向量形式可得,即有,設(shè),有,再分別討論三點(diǎn)共線和不共線時(shí)的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識求出范圍.【詳解】是的中點(diǎn),∴,即設(shè),于是(1)當(dāng)共線時(shí),因?yàn)?,①若點(diǎn)在之間,則,此時(shí),;②若點(diǎn)在的延長線上,則,此時(shí),.(2)當(dāng)不共線時(shí),根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點(diǎn)睛】本題主要考查學(xué)中點(diǎn)公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.15、【解析】
構(gòu)造,先利用定義判斷的奇偶性,再利用導(dǎo)數(shù)判斷其單調(diào)性,轉(zhuǎn)化為,結(jié)合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.16、【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點(diǎn)睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數(shù)列,得,由此能求出的前項(xiàng)和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,是一個(gè)單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項(xiàng)中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項(xiàng)和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,根據(jù),的定義,得:,,且兩個(gè)不等式中至少有一個(gè)取等號,當(dāng)時(shí),必有,∴,∴是一個(gè)單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時(shí),則必有,∴,∴是一個(gè)單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時(shí),,∵,中必有一個(gè)為0,根據(jù)上式,一個(gè)為0,為一個(gè)必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1);(2)見解析.【解析】
(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.19、(1);(2).【解析】
(1)根據(jù)題意,求得的值,根據(jù)切點(diǎn)在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個(gè)極值點(diǎn),等價(jià)于方程的兩個(gè)正根,,不等式恒成立,等價(jià)于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯(lián)立可得.(2)當(dāng)時(shí),,,有兩個(gè)極值點(diǎn),,且,,是方程的兩個(gè)正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【點(diǎn)睛】該題考查的是有關(guān)導(dǎo)數(shù)的問題,涉及到的知識點(diǎn)有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點(diǎn)的個(gè)數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.20、(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設(shè)直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點(diǎn)代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設(shè)直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設(shè),則,所以,所以.【點(diǎn)睛】本題主要考查橢圓標(biāo)準(zhǔn)方程的求法以及直線與橢圓的綜合問題,考查學(xué)生的運(yùn)算求解能力.21、(1)見解析;(2).【解析】
(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設(shè)的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點(diǎn)在x軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿?時(shí),,,于是,到的距離為1,直線與圓相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度網(wǎng)絡(luò)游戲開發(fā)運(yùn)營合同
- 2024年度塔吊操作培訓(xùn)合同
- 2024合同書CIF合同書
- 2024全新血液透析培訓(xùn)
- 2024年家具加盟授權(quán)合同
- 2024國際貨物買賣中檢驗(yàn)檢疫服務(wù)合同
- 公司管理年終工作總結(jié)
- 企業(yè)辦公室勵(lì)志標(biāo)語8篇
- 2024年度××智能穿戴設(shè)備研發(fā)生產(chǎn)合同
- 2024年度鋼材物流配送合同
- 木材材積速算表
- 如何培養(yǎng)學(xué)生良好的雙姿習(xí)慣(精)
- 計(jì)算機(jī)及外部設(shè)備裝配調(diào)試員國家職業(yè)技能標(biāo)準(zhǔn)(2019年版)
- GB18613-2012中小型異步三相電動(dòng)機(jī)能效限定值及能效等級
- 《臨床決策分析》課件.ppt
- 家風(fēng)家訓(xùn)PPT課件
- 淚道沖洗PPT學(xué)習(xí)教案
- 淺談校園影視在學(xué)校教育中的作用
- 無公害農(nóng)產(chǎn)品查詢
- 試劑、試藥、試液的管理規(guī)程
- 研究生課程應(yīng)用電化學(xué)(課堂PPT)
評論
0/150
提交評論