版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川省廣安市岳池中學(xué)2024年高考數(shù)學(xué)全真模擬密押卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)集合,,若集合中有且僅有2個元素,則實數(shù)的取值范圍為A. B.C. D.2.已知集合,,,則()A. B. C. D.3.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.54.已知實數(shù),則的大小關(guān)系是()A. B. C. D.5.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元6.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-57.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.8.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.9.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學(xué)生500名,估計理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.10010.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.11.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是()A. B. C. D.12.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.1二、填空題:本題共4小題,每小題5分,共20分。13.在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.14.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.15.某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,且.某用戶購買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù)為_________.16.若,則=______,=______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點的交點為,與的異于極點的交點為,求.18.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.19.(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實數(shù)的取值范圍.20.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點在線段上移動(不與重合),是的中點.(1)當(dāng)四面體的外接球的表面積為時,證明:.平面(2)當(dāng)四面體的體積最大時,求平面與平面所成銳二面角的余弦值.21.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計年的銷售量.22.(10分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關(guān)系及運算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.2、A【解析】
求得集合中函數(shù)的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數(shù)值域的求法,考查集合補集、交集的概念和運算,屬于基礎(chǔ)題.3、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.4、B【解析】
根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.5、D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎(chǔ)題.6、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.7、D【解析】
先根據(jù)向量坐標(biāo)運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標(biāo)運算,引入新定義,屬于簡單題目.8、B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標(biāo)為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.9、D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.10、D【解析】
利用復(fù)數(shù)的除法運算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點睛】本題主要考查了復(fù)數(shù)的除法運算,其中解答中熟記復(fù)數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.11、B【解析】
根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負,即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎(chǔ)題.12、A【解析】
由題意得到關(guān)于的等式,結(jié)合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.14、【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.15、【解析】
直接計算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎(chǔ)題.16、10【解析】
①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設(shè)點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標(biāo)方程為,,取代入計算得到答案.【詳解】(Ⅰ)設(shè)點,,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標(biāo)方程為:;,故,極坐標(biāo)方程為:.,故,,故.【點睛】本題考查了參數(shù)方程,極坐標(biāo)方程,弦長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.18、(I)見解析(II)【解析】
(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運算及其應(yīng)用,同時考查邏輯思維能力和綜合應(yīng)用能力屬難題.19、(1)(2)【解析】
(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據(jù)絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當(dāng)時,原不等式等價于,解得當(dāng)時,原不等式等價于,解得,所以;當(dāng)時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉(zhuǎn)化思想與分類討論思想的綜合應(yīng)用,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點,再證明平面平面,進而可得結(jié)論;(2)由題意,當(dāng)點位于點時,四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時.則其外接球的半徑為.因為時邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因為,所以為的中點.記的中點為,連接,.則,,,所以平面平面.因為平面,所以平面.(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時,的面積最大.所以當(dāng)點位于點時,四面體的體積最大.以點為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時,平面與平面所成銳二面角的余弦值為.【點睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.21、(1),中位數(shù)為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預(yù)計年的銷售量約為萬臺.【解析】
(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個矩形底邊的中點值乘以相應(yīng)矩形的面積,相加可得出銷量的平均數(shù),由此可預(yù)計年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個季度的銷售量為(萬臺),由此預(yù)測年的銷售量為萬臺.【點睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.22、(1)見證明;(2)【解析】
(1)取的中點,連接,要證平面平面,轉(zhuǎn)證平面,即證,即可;(2)以為坐標(biāo)原點,以為軸正方向,建立如圖所示的空間直角坐標(biāo)系,分別求出平面與平面的法向量,代入公式,即可得到結(jié)果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021美容院疫情防控人員管理制度
- 倉庫管理視頻監(jiān)控系統(tǒng)施工方案
- 環(huán)保型給水管道施工方案實施
- 科學(xué)課中動物分類教學(xué)方案
- 研究所實驗室值班制度規(guī)范
- 礦山作業(yè)有限空間安全施工方案
- 2024至2030年中國祛皺除黑眼圈霜數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國混絲毛衫絲光劑數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年翻邊法蘭項目投資價值分析報告
- 2024至2030年中國搪玻璃薄膜蒸發(fā)器數(shù)據(jù)監(jiān)測研究報告
- 中華人民共和國突發(fā)事件應(yīng)對法課件
- 小升初小學(xué)語文總復(fù)習(xí):關(guān)聯(lián)詞語、修改病句、修辭、標(biāo)點符號、積累與運用
- 2024年大學(xué)計算機基礎(chǔ)考試題庫附答案(完整版)
- 中山大學(xué)240英語(單考)歷年考研真題及詳解
- 廣東省智慧高速公路建設(shè)指南(2023年版)
- 高校思想政治教育生活化研究的開題報告
- 口腔放射工作人員培訓(xùn)
- 建筑施工現(xiàn)場典型安全事故案例
- 小學(xué)三年級數(shù)學(xué)上學(xué)期期末考試試卷
- 安全生產(chǎn)應(yīng)急管理體系建設(shè)
- (高清版)DZT 0346-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 油頁巖、石煤、泥炭
評論
0/150
提交評論