




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
絕密★啟用前
2022~2023學(xué)年度上期期末教學(xué)質(zhì)量檢測試卷
九年級數(shù)學(xué)
(時間:90分鐘滿分:100分)
注意事項:
1.試題的答案書寫在答題卡上,不得在試卷上直接作答。
2.作答前認(rèn)真閱讀答題卡上的注意事項。
3.考試結(jié)束,由監(jiān)考人員將試卷和答題卡一并收回。
一、選擇題(本大題有16個小題,共52分,1-8小題各4分,9-12小題各3分,13-16小題
各2分)
1.在R3A5C中,ZC=90°,ZA=30°,則sin30°的值是()
A.|B.立C."D.正
2.下列事件中,是隨機(jī)事件的是()
A.晴天太陽從東方升起B(yǎng).從一個只裝有白球的袋中摸球,摸出紅球
C.任意畫一個三角形,其內(nèi)角和是360°D.隨意翻到一本書的某頁,這頁的頁碼是偶數(shù)
3.如圖,在A43C中,DE//BC,如果AO=3,BD=6,AE=2,那么EC的值為()
B
A.4B.6C.8D.9
4.把二次函數(shù)丁=/+2工-6配方成頂點式為()
A.y=(x-l)--7B.y=(x+1)2-7
22
C.J=(X+2)-10D._y=(x-3)+3
5.如圖,已知A3是半圓。的直徑,"=125°,。是弧AC上任意一點,那么的度數(shù)是
()
D,C
A.25°B.35°
6.二次函數(shù)y=V-3x+l的圖象大致是(
7.若一個圓內(nèi)接正多邊形的中心角是60°,則這個多邊形是()
A,正九邊形B.正八邊形C.正七邊形D.正六邊形
8.在一對組樣本數(shù)據(jù)進(jìn)行分析時,佳琪列出了方差的計算公式:
、=(1-4)2+(3-+(4—4)2+(6—4『+(6-4『,由公式提供的信息,則下列說法錯誤的是
5
()
A.樣本的平均數(shù)是4B.樣本的眾數(shù)是4
C.樣本的中位數(shù)是4D.樣本的總數(shù)〃=5
9.河堤的橫斷面如圖所示,堤高5C=6m,迎水坡A3的坡比為1:石,則A3的長是()
C.12石mD.6A/5m
10.2019年在武漢市舉行了軍運會.在軍運會比賽中,某次羽毛球的運動路線可以看作是拋物線
1,5一一5
y=—-—+x+—的一部分(如圖),其中出球點8離地面。點的距離是一米,球落地點A到。點的距離
444
A.1米B.3米C.5米D.一米
16
11.如圖,以點。為位似中心,把放大得到△A8C',且位似比為2:5,以下說法中錯誤的是
()
A.△ABCs^ABCB.AO:A4f=2:5
CAB:AB'=2:5D.AC//AC
12.下面是李老師編輯的一份文檔,由于粗心,作法的步驟被打亂了:
已知:如圖,ZACB是43。的一個內(nèi)角.
求作:ZAPB=ZACB.
作法:
①以點。為圓心,Q4為半徑作的外接圓;
②在弧ACB上取一點尸,連接",BP.所以NAPfi=NACB.
③分別以點A和點8為圓心,大于工A3長為半徑作弧,兩弧相交于M,N兩點,作直線MV;分
2
別以點5和點C為圓心,大于的長為半徑作弧,兩弧相交于E,尸兩點,作直線所;與直線
2
交于點。;
正確的作圖步驟應(yīng)該是()
A①③②B.③②①C.③①②D.②①③
13.關(guān)于反比例函數(shù)y=±,點(。,外在它的圖象上,下列說法中錯誤的是()
A.當(dāng)x<0時,y隨X的增大而減小B.圖象位于第一、三象限
C.點(4a)和(一仇—a)都在該圖象上D.當(dāng)尤<1時,y>4
14.如圖,小明為了測量遵義市湘江河的對岸邊上8,C兩點間的距離,在河的岸邊與平行的直線反
上點A處測得/石鉆=37°,ZFAC=6Q°,已知河寬18米,則B,C兩點間的距離為()(參考數(shù)
343
據(jù):sin37°?—,cos37°?—,tan37°?—)
554
A.(18+6?米B.(24+106)米C.(24+6碼米D.(24+18⑹米
15.二次函數(shù)丁=。必+初1+。(?,b,c為常數(shù),且a/0)中的x與V的部分對應(yīng)值如下表.下列結(jié)論
錯誤的是()
X-i0123
y0343
A.a<0B.2a+b=0
c.當(dāng)龍〉1時,y的值隨天的增大而增大D.表中0蓋住的數(shù)是。
16.如圖,點/為“RC的內(nèi)心,AB=5,AC=4,BC=3,將/ACB平移使其頂點與/重合,則圖
中陰影部分的面積為()
c
二、填空題(本大題有4個小題,共16分,每題4分)
17.如圖是一個可以自由轉(zhuǎn)動的質(zhì)地均勻的轉(zhuǎn)盤,被分成12個相同的小扇形.若把某些小扇形涂上紅色,
使轉(zhuǎn)動的轉(zhuǎn)盤停止時,指針指向紅色的概率是工,則涂上紅色的小扇形有個.
18.如圖是一位同學(xué)從照片上剪切下來的海上日出時的畫面,“圖上”太陽與海平線交于A,5兩點,他
測得“圖上”圓的半徑為5厘米,A3=8厘米.若從日前太陽所處位置到太陽完全跳出海平面的時間為8
分鐘,則①現(xiàn)在“圖上”太陽與海平線的位置關(guān)系是;②“圖上”太陽升起的平均速度為
厘米/分.
19.某公司分別在A,B兩城生產(chǎn)同種產(chǎn)品,共80件.A城生產(chǎn)產(chǎn)品的總成本》(萬元)由兩部分組成,
一部分與無(產(chǎn)品數(shù)量,單位:件)的平方成正比,比例系數(shù)為。;另一部分與x成正比,比例系數(shù)為
b,生產(chǎn)中得到表中數(shù)據(jù).B城生產(chǎn)產(chǎn)品的每件成本為60萬元.
X(件)1020
y萬元5001200
①a=,b=;
②當(dāng)A城生產(chǎn)件時,這批產(chǎn)品的總成本的和最少,最小值為萬元.
20.如圖,等邊三角形AABC的邊長為16,動點尸從點B出發(fā)沿運動到點C,連接AP,作
ZAPD=6Q°,P£>交AC于點。.①若PC=12,則CD的長為;②動點尸從點B運動到點
C時,點。的運動路徑長為.
三、解答題(本大題有3個小題,共32分;解答應(yīng)寫出文字說明、證明過程或演算步驟)
21.某校在開展“網(wǎng)絡(luò)安全知識教育周”期間,在九年級隨機(jī)抽取了20名學(xué)生分成甲、乙兩組,每組各10
人,進(jìn)行“網(wǎng)絡(luò)安全”現(xiàn)場知識競賽,把甲、乙兩組成績進(jìn)行整理分析(滿分100分,競賽得分用X表
示:90<x<100為網(wǎng)絡(luò)安全意識非常強(qiáng),804x<90為網(wǎng)絡(luò)安全意識強(qiáng),尤<80為網(wǎng)絡(luò)安全意識一般).
收集整理的數(shù)據(jù)制成如下兩幅統(tǒng)計圖:
甲組學(xué)生竟英成績統(tǒng)計圖
t人數(shù)乙組學(xué)生競賽成績統(tǒng)計圖
4
3
圖?圖2
分析數(shù)據(jù):
平均數(shù)中位數(shù)眾數(shù)
甲組8380C
乙組ab90
根據(jù)以上信息回答下列問題:
(1)填空:a=,b=,c=
(2)已知該校九年級有1200人,估計九年級網(wǎng)絡(luò)安全意識非常強(qiáng)的人數(shù)一共是多少?
(3)現(xiàn)在準(zhǔn)備從甲乙兩組滿分的同學(xué)中抽取兩名同學(xué)參加校級比賽,求抽取的兩名同學(xué)恰好一人來自甲
組,另一人來自乙組的概率.
22.已知:拋物線y=與無軸交于點A、8兩點,。為拋物線頂點.曲線段是雙曲線上的
一段,點“(3,3),點
y
(1)如圖,當(dāng)拋物線經(jīng)過點以(3,3)時,
①請求出這個拋物線的解析式,并求出點A、B的坐標(biāo);
②該拋物線是否存在一點異于點。的點。使得SAAB?=S"BC,若存在請求出點。坐標(biāo),若不存在請說明
理由;
③若E(利K)、廠(帆+4,%)為拋物線上兩點,且m>0,直接寫出%、%的大小關(guān)系.
(2)若拋物線y=『-Q-%)2與曲線段肱V有交點,則滿足條件的整數(shù)/有個.
23.如圖,在邊長為6的等邊三角形ABC中,動點P從點A出發(fā),沿AB邊向終點B運動,同時,動點
。從點B出發(fā),沿3C邊向終點C運動,兩者速度均為每秒1個單位長度,運動時間為九以PQ為直徑
在尸。右側(cè)作半圓。.
(2)當(dāng)半圓。與除點。外,另有交點G時,若NQOG=30。,求/3PQ的度數(shù);
(3)直接寫出:當(dāng)/為何值時,半圓。正好與等邊三角形ABC的一邊相切.
參考答案
一、選擇題(本大題有16個小題,共52分,1-8小題各4分,9-12小題各3分,13-16小題
各2分)
1.在RtAABC中,ZC=90°,ZA=30°,貝Usin30°的值是()
A.|B.立C.立D.正
2223
【答案】A
【解析】
【分析】根據(jù)特殊角的三角函數(shù)即可得解.
【詳解】解:根據(jù)特殊角的三角函數(shù)值可知,sin300=1,
故選A.
【點睛】本題主要考查了特殊角的三角函數(shù)值的計算,關(guān)鍵是熟練掌握特殊角的三角函數(shù)值.
2.下列事件中,是隨機(jī)事件的是()
A.晴天太陽從東方升起B(yǎng).從一個只裝有白球的袋中摸球,摸出紅球
C.任意畫一個三角形,其內(nèi)角和是360°D.隨意翻到一本書的某頁,這頁的頁碼是偶數(shù)
【答案】D
【解析】
【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念可區(qū)別各類事件.
【詳解】解:A、晴天太陽從東方升起,是必然事件,故該選項不符合題意;
B、從一個只裝有白球的袋中摸球,摸出紅球,是不可能事件,故該選項不符合題意;
C、任意畫一個三角形,其內(nèi)角和是360。,是不可能事件,故該選項不符合題意;
D、隨意翻到一本書的某頁,這頁的頁碼是偶數(shù),是隨機(jī)事件,故該選項符合題意;
故選:D.
【點睛】本題考查了隨機(jī)事件,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念,必然事
件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨
機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.
3.如圖,在“3C中,DE//BC,如果AO=3,BD=6,AE=2,那么EC的值為()
A
A.4B.6C.8D.9
【答案】A
【解析】
【分析】根據(jù)平行線分線段成比例即可求解.
【詳解】解:〃3C,
.??絲=娃,即3=2,
BDEC6EC
解得:EC=4,
故選:A.
【點睛】本題主要考查了平行線分線段成比例,解題的關(guān)鍵是掌握:平行線分線段成比例定理指的是兩條
直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.
4.把二次函數(shù)丁=/+2工-6配方成頂點式為()
A.y=-7B.y=(x+1)2-7
Cy=(x+2)2_10D._y=(x-3)2+3
【答案】B
【解析】
【分析】加上一次項系數(shù)一半的平方,根據(jù)完全平方公式變形即可得到答案.
【詳解】解:y=x2+2%-6=x2+2x+1-1-6=(x+1)--7.
故選:B.
【點睛】此題主要考查了化二次函數(shù)一般式為頂點式,正確應(yīng)用完全平方公式是解題關(guān)鍵.
5.如圖,已知A3是半圓。的直徑,ZZ)=125°,。是弧AC上任意一點,那么N5AC的度數(shù)是
()
A.25°B.35°C.45°D.40°
【答案】B
【解析】
【分析】根據(jù)圓內(nèi)接四邊形的對角互補(bǔ),求得15的度數(shù),由A3為半圓的直徑,根據(jù)圓周角定理可得直徑
所對的圓周角為直角,可得NACB為直角,在Rt/VLBC中,即可求出Z8AC的度數(shù).
【詳解】解::四邊形A3CZ)為圓的內(nèi)接四邊形,ND=125。,
:.ZB=55°,
:AB是半圓。的直徑,
ZACB=90°,
貝|JNE4C=9O°—55°=35°
故選:B.
【點睛】此題考查了圓周角定理,以及圓內(nèi)接四邊形的性質(zhì),涉及的知識有:直徑所對的圓周角為直角,
直角三角形的兩個銳角互余,以及圓內(nèi)接四邊形的對角互補(bǔ),利用了轉(zhuǎn)化的思想,熟練掌握以上知識是解
本題的關(guān)鍵.
6.二次函數(shù)y=3x+l的圖象大致是()
【答案】B
【解析】
【分析】利用二次函數(shù)的開口方向和頂點坐標(biāo),結(jié)合圖象找出答案即可.
【詳解】解:在二次函數(shù)y=3x+l=(x—:中,
。=1>0,圖象開口向上,頂點坐標(biāo)為|,一:在第四象限,
符合條件的圖象是B.
故選:B.
【點睛】此題考查二次函數(shù)的圖象,掌握二次函數(shù)的性質(zhì),圖象的開口方向和頂點坐標(biāo)是解決問題的關(guān)
鍵.
7.若一個圓內(nèi)接正多邊形的中心角是60°,則這個多邊形是()
A.正九邊形B.正八邊形C.正七邊形D.正六邊形
【答案】D
【解析】
【分析】根據(jù)正多邊形的中心角的計算公式計算即可.
【詳解】解:設(shè)這個多邊形的邊數(shù)是W,
由題意得,336匕0°=60°,
n
解得,n=6,
故選:D.
【點睛】本題考查的是正多邊形和圓的有關(guān)知識,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.
8.在一對組樣本數(shù)據(jù)進(jìn)行分析時,佳琪列出了方差的計算公式:
1=。-盯+(3-4)2+(4—4+(6-4+(6-4)2,由公式提供的信息,則下列說法錯誤的是
5
()
A.樣本的平均數(shù)是4B.樣本的眾數(shù)是4
C.樣本的中位數(shù)是4D.樣本的總數(shù)〃=5
【答案】B
【解析】
【分析】根據(jù)方差的計算公式:一組數(shù)據(jù)的每一個數(shù)分別減去這組數(shù)據(jù)的平均數(shù)的差的平方和,除以數(shù)據(jù)的
個數(shù),進(jìn)行判斷即可.
r*臺八*7,U-.9(1—4)+(3—4)+(4—4)+(6—4)+(6-4)藺2n
[詳解]解:由:=------—---L—---L—---L—1---------L可知:
5
這組數(shù)據(jù)為:L3,4,6,6,平均數(shù)為4,
這組數(shù)據(jù)的中位數(shù)為:4;樣本的總數(shù)〃=5;眾數(shù)為:6;
:.A,C,D,選項正確,不符合題意;B選項錯誤,符合題意;
故選B.
【點睛】本題考查平均數(shù),中位數(shù),眾數(shù)和方差.正確理解方差的計算公式,是解題的關(guān)鍵.
9.河堤的橫斷面如圖所示,堤高5c=6m,迎水坡A3的坡比為1:若,則A3的長是()
【答案】A
【解析】
【分析】根據(jù)題意可以求得AC的長,再根據(jù)勾股定理即可求得A3的長,本題得以解決.
【詳解】解:???BC=6米,迎水坡A3的坡比為1:百,
BC_1
解得,AC=66,
AB=VBC2+AC2=12m,
故選:A.
【點睛】本題考查解直角三角形的應(yīng)用-坡度坡角問題,解答本題的關(guān)鍵是明確題意,利用坡度和勾股定理
解答.
10.2019年在武漢市舉行了軍運會.在軍運會比賽中,某次羽毛球的運動路線可以看作是拋物線
1,55
y=——f+x+—的一部分(如圖),其中出球點3離地面。點的距離是一米,球落地點A到。點的距離
444
A.1米B.3米C.5米D.一米
16
【答案】C
【解析】
【分析】令y=o求得x的值即可求解.
1,5
【詳解】解:令y=O,則——x2+x+-=0,
44
解得:石=5,x2=-l(舍去),
...球落地點A到0點的距離是5米.
故選:C.
【點睛】本題主要考查二次函數(shù)的應(yīng)用,利用函數(shù)的性質(zhì)是解題的關(guān)鍵.
11.如圖,以點。為位似中心,把&鉆。放大得到△AB'C',且位似比為2:5,以下說法中錯誤的是
()
A.AABC^AAB'CB.AO-.AA=2:5
C.AB:AB'=2:5D.AC//AC
【答案】B
【解析】
【分析】根據(jù)位似變換的概念和性質(zhì)判斷即可.
【詳解】解:;把AABC放大得到△AFC',且位似比為2:5,
:.A、AABC^AAB'C,該選項不符合題意;
B、AO;OA=2;5,該選項符合題意;
C、AB:AB'=2:5,該選項不符合題意;
D、AC//AC,該選項不符合題意;
故選:B.
【點睛】本題考查的是位似變換的概念和性質(zhì).掌握位似三角形的性質(zhì)是解題的關(guān)鍵.
12.下面是李老師編輯的一份文檔,由于粗心,作法的步驟被打亂了:
已知:如圖,/ACB是的一個內(nèi)角.
求作:ZAPB=ZACB.
作法:
①以點。為圓心,Q4為半徑作的外接圓;
②在弧ACB上取一點P,連接AP,BP.所以=
③分別以點A和點B為圓心,大于LAB的長為半徑作弧,兩弧相交于M,N兩點,作直線MV;分
2
別以點5和點C為圓心,大于的長為半徑作弧,兩弧相交于E,尸兩點,作直線所;與直線
2
MN交于點0;
正確的作圖步驟應(yīng)該是()
A.①③②B.③②①C.③①②D.②①③
【答案】C
【解析】
【分析】根據(jù)同弧所對的圓周角相等,因此要畫出的外接圓,即要確定外接圓的圓心,根據(jù)外心,
是三角形,三邊的中垂線的交點,因此要先做的中垂線,利用交點確定圓心,再畫出&43C的外
接圓,進(jìn)行判斷即可.
【詳解】解:根據(jù)圓周角定理:同弧所對的圓周角相等,
...畫出"RC的外接圓,在弧ACB上取一點P,連接AP,BP.即可得到=
..?外心是三角形三邊的中垂線的交點,
先作A58c的中垂線,利用交點確定圓心。,再點。為圓心,。兇為半徑作AABC的外接圓,然后在
弧ACB上取一點尸,連接AP,BP,即可.
作圖的順序為:③①②;
故選C.
【點睛】本題考查作圖一復(fù)雜作圖.熟練掌握三角形的外接圓的圓心是三邊中垂線的交點,以及同弧所對
的圓周角相等,是解題的關(guān)鍵.
13.關(guān)于反比例函數(shù)y=±,點(。,“在它的圖象上,下列說法中錯誤的是()
x
A.當(dāng)x<0時,y隨X的增大而減小B.圖象位于第一、三象限
C.點(。,a)和(-伍一。)都在該圖象上D.當(dāng)x<l時,y>4
【答案】D
【解析】
【分析】根據(jù)反比例函數(shù)的圖象和性質(zhì),逐一進(jìn)行判斷即可.
4
【詳解】解:A、y=—,左=4>0,在每一個象限內(nèi),y隨x的增大而減小,
.?.當(dāng)x<0時,>隨x的增大而減小,選項正確,不符合題意;
B、左=4〉0,雙曲線位于第一、三象限,選項正確,不符合題意;
C、?.?點(。力)在反比例函數(shù)y=3的圖象上,
ab=4,
:.ba=(-b)?(一〃)=ab=4,
即:點(4a)和(-d-a)都在該圖象上,選項正確,不符合題意;
D、當(dāng)0<x<l時,y>4,當(dāng)x<0時,y<0,選項錯誤,符合題意;
故選D.
【點睛】本題考查反比例函數(shù)的圖象和性質(zhì).熟練掌握反比例函數(shù)的圖象和性質(zhì),是解題的關(guān)鍵.
14.如圖,小明為了測量遵義市湘江河的對岸邊上8,C兩點間的距離,在河的岸邊與平行的直線反
上點A處測得NEA3=37°,ZFAC=60°,已知河寬18米,則8,C兩點間的距離為()(參考數(shù)
一343
據(jù):sin37°?—,cos37°?—,tan37°?—)
554
A.(18+6⑹米B.(24+10⑹米C.(24+6⑹米D,(24+18⑹米
【答案】C
【解析】
【分析】根據(jù)題意和題目中的數(shù)據(jù),利用平行線的性質(zhì)和銳角三角函數(shù),可以表示出3。和CD,然后即可
得到的長.
A/DRA=/FAB,ZDCA=ZCAF,
-:ZEAB=3T,ZFAC=60°,
:.ZDBA=37°,ZDCA=60°,
*.*AD=18米,tan/DBA-....,tanN_DCA----,
BDCD
.3_18r-_18
??一,yJ—,
4BDCD
解得3。=24米,CD=6百米,
3C=3D+CD=(24+6?米,
故選:C.
【點睛】本題考查解直角三角形的應(yīng)用,解答本題的關(guān)鍵是作出合適的輔助線,利用數(shù)形結(jié)合的思想解
答.
15.二次函數(shù)>(a,b,。為常數(shù),且awO)中的x與》的部分對應(yīng)值如下表.下列結(jié)論
錯誤的是()
-i0123
y0343
A.a<0B.2a+Z?=0
c.當(dāng)x〉i時,y的值隨x的增大而增大D.表中停蓋住的數(shù)是o
【答案】c
【解析】
【分析】根據(jù)對稱點坐標(biāo),確定拋物線的對稱軸,再根據(jù)對稱軸判定對稱點,根據(jù)函數(shù)的增減性,判定拋
物線的開口方向即可.
【詳解】因為(0,3),(2,3)是對稱點,
所以拋物線的對稱軸是直線x=9里=1=-—,
22a
所以2〃+/?=0,
故B正確;
所以(1,4)是拋物線的頂點,且為有最大值,
故拋物線開口向下,
所以。<0,
故A正確;
-1+3
因為x=-----=1
2
所以(—1,0),(3,?)是對稱點,
所以表中0蓋住的數(shù)是0,
故D正確;
因為。<0,
所以對稱軸的右側(cè),V的值隨X的增大而減小,
故C錯誤.
故選C.
【點睛】本題考查了拋物線的對稱軸,對稱點,最值,增減性,熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.
16.如圖,點/為“RC的內(nèi)心,AB=5,AC=4,BC=3,將ZACB平移使其頂點與/重合,則圖
中陰影部分的面積為()
【答案】B
【解析】
【分析】根據(jù)三角形內(nèi)心的性質(zhì)以及再根據(jù)平移的性質(zhì)和平行線的性質(zhì)證明ZDIA=ZDAI,ZEIB=ZEBI,
DEIDIE
所以=EI=EB,證明AABC是直角三角形,得至ij△ABCSAQE/,推出一,設(shè)
543
DE=5k,AC=4k,IE=3k,由AB=5,據(jù)此即可求解.
【詳解】解:如圖,連接AZ、BI,
:點/為AABC的內(nèi)心,
;.旬平分/B4C,9平分NABC,
/.ZCAI=ZDAI,ZCBI=ZEBI,
1//ACB平移使其頂點與/重合,
:.ID//AC,正〃BC,
/.ZCAI=ZDIA,NCBI=NEIB,
ZDIA=ZDAI,ZEIB=ZEBI,
DI=DA,EI=EB,
AB=5,AC=4,BC=3,
AB2=AC2+BC2,
,AABC是直角直角三角形,且/ACB=90。,
由題意得AABCSADEI,
DEIDIEDEIDIE
:.——=——=——,即a——=——=——,
ABACBC543
設(shè)DE=5k,AC=4Z,IE=3k,
,:AB=5,
5k+4k+3k=5,
陰影部分的面積為=",
23424
故選:B.
【點睛】本題考查了相似三角形的判定和性質(zhì),三角形的內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離
相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.
二、填空題(本大題有4個小題,共16分,每題4分)
17.如圖是一個可以自由轉(zhuǎn)動的質(zhì)地均勻的轉(zhuǎn)盤,被分成12個相同的小扇形.若把某些小扇形涂上紅色,
使轉(zhuǎn)動的轉(zhuǎn)盤停止時,指針指向紅色的概率是,,則涂上紅色的小扇形有個.
【答案】3
【解析】
【分析】先根據(jù)題意得出指針指向紅色的概率是:‘再根據(jù)有12個等分區(qū)’結(jié)合概率公式即可求出答
案.
【詳解】解:12><2=3(個).
4
故涂上紅色的小扇形有3個.
故答案為:3.
【點睛】此題考查了概率公式,掌握概率公式的求法即概率=所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.
18.如圖是一位同學(xué)從照片上剪切下來的海上日出時的畫面,“圖上”太陽與海平線交于A,8兩點,他
測得“圖上”圓的半徑為5厘米,43=8厘米.若從日前太陽所處位置到太陽完全跳出海平面的時間為8
分鐘,則①現(xiàn)在“圖上”太陽與海平線的位置關(guān)系是;②“圖上”太陽升起的平均速度為
________厘米/分.
【答案】①.相交②.1
【解析】
【分析】首先根據(jù)海平面與圓有兩個交點可判斷出直線與圓的位置關(guān)系,然后連接。4,過點。作
8,4?于。,由垂徑定理求出AD的長,再由勾股定理求出。。的長,然后計算出太陽在海平線以下部
分的高度,即可求解.
【詳解】解:.??海平面與圓有兩個交點
???現(xiàn)在“圖上”太陽與海平線的位置關(guān)系是相交;
設(shè)“圖上”圓的圓心為。,連接。4,過點。作于〃如圖所示:
:AB=8厘米,
/.AD=-AB=4(厘米),
2
=5厘米,
,,OD=VQA2—AZ)2=1守—4?=3(厘米),
...海平線以下部分高度=Q4+OD=5+3=8(厘米),
:太陽從所處位置到完全跳出海平面的時間為8分鐘,
,“圖上”太陽升起的速度=8+8=1(厘米/分),
故答案為:相交,1.
【點睛】本題考查的是垂徑定理的運用,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
19.某公司分別在A,B兩城生產(chǎn)同種產(chǎn)品,共80件.A城生產(chǎn)產(chǎn)品的總成本V(萬元)由兩部分組成,
一部分與x(產(chǎn)品數(shù)量,單位:件)的平方成正比,比例系數(shù)為。;另一部分與x成正比,比例系數(shù)為
b,生產(chǎn)中得到表中數(shù)據(jù).B城生產(chǎn)產(chǎn)品的每件成本為60萬元.
X(件)1020
y萬元5001200
①a=,b=;
②當(dāng)A城生產(chǎn)件時,這批產(chǎn)品總成本的和最少,最小值為萬元.
【答案】①.1②.40③.104700
【解析】
【分析】①首先根據(jù)題意得:y=ax1+bx,再利用待定系數(shù)法即可求得。、6的值;
②首先由①知:A城生產(chǎn)產(chǎn)品的總成本為:y=x2+40x,設(shè)當(dāng)A城生產(chǎn)機(jī)件時,這批產(chǎn)品的總成本的和
最少,最小值為?萬元,根據(jù)題意得:w=/n2+40/^+60(80-//!),再根據(jù)二次函數(shù)的性質(zhì),即可求
得.
【詳解】解:①根據(jù)題意得:y=ax2+bx,
x=lQx=20
分別代入,得
y=5Q0y=1200
100a+10b=500
<400a+20Z?=1200
a=1
解得《
b=40'
故答案為:1,40;
②由①知:A城生產(chǎn)產(chǎn)品的總成本為:y=x2+40x,
設(shè)當(dāng)A城生產(chǎn)加件時,這批產(chǎn)品的總成本的和最少,最小值為卬萬元,
則2城生產(chǎn)(80—件,
根據(jù)題意得:w=m2+40m+60(80-m),
得W=(777-10)2+4700,
「?當(dāng)zn=10時,這批產(chǎn)品的總成本的和最少,最小值為4700萬元,
故答案為:10,4700.
【點睛】本題考查了利用待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的性質(zhì),準(zhǔn)確求得二次函數(shù)的解析
式,熟練運用二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
20.如圖,等邊三角形的邊長為16,動點P從點3出發(fā)沿運動到點C,連接AP,作
ZAPD=60°,PD交AC于點D.①若尸C=12,則CD的長為;②動點尸從點B運動到點
C時,點D的運動路徑長為.
【解析】
【分析】①證明△BAPs^cQD,根據(jù)相似三角形的性質(zhì)即可求解;
②分點尸從點B運動到中點和點P從6C中點運動到點C時,兩種情況討論,利用含30度角的直角的
性質(zhì)即可求解
【詳解】解:①;是等邊三角形,
:.ZB=ZC=60°,
,:ZAPC=ZB+ZBAP=ZAPD+ZCPD,
:.ZBAP=/CPD,
:.^BAP^ZXCPD,
PCCD12CD
??---=----,即Hn—=-------,
ABPB1616-12
/.CD=3;
②如圖,當(dāng)時,ZBAP=ZCAP=3Q°,BP=PC=-BC=8,
2
:.ZADP=90°,即PDUC,
CD=-PC=4,
2
當(dāng)點P從點8運動到中點時,點。運動路徑長為CD=4,
當(dāng)點P從6c中點運動到點C時,點。的運動路徑長為DC=4,
點D的運動路徑長為8.
故答案為:3;8.
【點睛】本題考查了相似三角形的判定和性質(zhì),等邊三角形的性質(zhì),含30度角的直角的性質(zhì),解題的關(guān)
鍵是靈活運用所學(xué)知識解決問題.
三、解答題(本大題有3個小題,共32分;解答應(yīng)寫出文字說明、證明過程或演算步驟)
21.某校在開展“網(wǎng)絡(luò)安全知識教育周”期間,在九年級隨機(jī)抽取了20名學(xué)生分成甲、乙兩組,每組各10
人,進(jìn)行“網(wǎng)絡(luò)安全”現(xiàn)場知識競賽,把甲、乙兩組的成績進(jìn)行整理分析(滿分100分,競賽得分用X表
示:90<x<100為網(wǎng)絡(luò)安全意識非常強(qiáng),80Vx<90為網(wǎng)絡(luò)安全意識強(qiáng),九<80為網(wǎng)絡(luò)安全意識一般).
收集整理的數(shù)據(jù)制成如下兩幅統(tǒng)計圖:
甲組學(xué)生竟裹成績統(tǒng)計圖
圖I
分析數(shù)據(jù):
平均數(shù)中位數(shù)眾數(shù)
甲組8380C
乙組ab90
根據(jù)以上信息回答下列問題:
(I)填空:a=,b=,c=:
(2)已知該校九年級有1200人,估計九年級網(wǎng)絡(luò)安全意識非常強(qiáng)的人數(shù)一共是多少?
(3)現(xiàn)在準(zhǔn)備從甲乙兩組滿分的同學(xué)中抽取兩名同學(xué)參加校級比賽,求抽取的兩名同學(xué)恰好一人來自甲
組,另一人來自乙組的概率.
【答案】⑴85,90,80
(2)估計九年級網(wǎng)絡(luò)安全意識非常強(qiáng)的大約有540人;
2
(3)兩名同學(xué)恰好一人來自甲組,另一人來自乙組的概率為
【解析】
【分析】(1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的定義進(jìn)行計算即可;
(2)求出樣本中,網(wǎng)絡(luò)安全意識強(qiáng)的所占的百分比即可估計總體中的百分比,進(jìn)而計算出相應(yīng)的人數(shù);
(3)列舉出所有可能出現(xiàn)的結(jié)果情況,再根據(jù)概率的定義進(jìn)行計算即可.
【小問1詳解】
解:甲組10名同學(xué)成績出現(xiàn)次數(shù)最多的是80分,共出現(xiàn)6次,因此眾數(shù)是80分,即c=80,
70x3+80x1+90x4+100x2
乙組的平均數(shù)。==85(分),
10
90+90
將乙組的10名同學(xué)的成績從小到大排列,處在中間位置的兩個數(shù)的平均數(shù)為-------=90(分),即中位
2
數(shù)5=90,
故答案為:85,90,80;
【小問2詳解】
2+1+4+2
解:1200x---------------=540(人),
10+10
答:該校九年級有1200人,估計九年級網(wǎng)絡(luò)安全意識非常強(qiáng)的大約有540人;
【小問3詳解】
解:甲組1名,乙組2名滿分的同學(xué)中任意選取2名,所有可能出現(xiàn)的結(jié)果如下:
甲乙1?乙2
甲乙1甲乙2甲
乙1甲乙1乙2乙1
乙2甲乙2乙1乙2
共有6種可能出現(xiàn)的結(jié)果,其中兩名同學(xué)恰好一人來自甲組,另一人來自乙組的有4種,
42
所以兩名同學(xué)恰好一人來自甲組,另一人來自乙組的概率為二=工.
63
【點睛】本題考查列表法或樹狀圖法求概率,條形統(tǒng)計圖、折線統(tǒng)計圖以及樣本估計總體,掌握中位數(shù)、
眾數(shù)平均數(shù)的計算方法是正確解答的前提,列舉出所有可能出現(xiàn)的結(jié)果是計算概率的關(guān)鍵.
22.已知:拋物線y=〃—?—與x軸交于點A、8兩點,C為拋物線頂點.曲線段是雙曲線上的
一段,點以(3,3),點
y
(1)如圖,當(dāng)拋物線經(jīng)過點以(3,3)時,
①請求出這個拋物線的解析式,并求出點A、B的坐標(biāo);
②該拋物線是否存在一點異于點。的點。使得SAAB?=S"BC,若存在請求出點。坐標(biāo),若不存在請說明
理由;
③若E(利K)、廠(帆+4,%)為拋物線上兩點,且m>0,直接寫出%、%的大小關(guān)系.
(2)若拋物線y=『-Q-%)2與曲線段肱V有交點,則滿足條件的整數(shù)/有個.
【答案】⑴①y=—八以,4(0,0),8(4,0);②(2—2應(yīng)T)或(2+2也—4卜③%〉為
(2)3
【解析】
【分析】(1)①先用待定系數(shù)法求出二次函數(shù)解析式,再令、=??汕蟪鳇cA、B坐標(biāo);
②設(shè)。(乂―/+4%),利用面積公式列方程求解即可;
③分兩種情況利用二次函數(shù)的增減性求解即可;
(2)求出點N的坐標(biāo),把點M和點N的坐標(biāo)代入二次函數(shù)解析式求出r的臨界值即可.
【小問1詳解】
①把M(3,3)代入y=〃一Q—力2,得
3=?-(z-3)2,
解得r=2,
y=22-(2-x)2=—x2+4x,
解—x2+4x=0,得
玉=0,犬2=4,
??.A(0,0),5(4,0);
②,=-(%-2)2+4,
???C(2,4).
設(shè)£)(再一次2+4%),
?^AABD=^AABC'
^AByc=^AB-\yD\,
1?)c=血|=4,
???點。異于點C,
?*?-x2+4%=T,
解得x1=2—2V^,x2=2+2^/2,
???點D坐標(biāo)為(2-20,—4)或(2+20,—4)
③當(dāng)0〈根<2時,
2—m—(m+4—2)=—2m<0,
???%>為.
當(dāng)m>2時,M>為,
綜上可知,當(dāng)機(jī)>0時,M>為;
【小問2詳解】
設(shè)雙曲線解析式為y=A,把以(3,3)代入得
X
k=3x3=9,
9
???,=一
x
把N(a,1)代入得a=9,
2
把M(3,3)代入y=e-(t-%)得
3=?-(?-3)2,
解得f=2.
22
把M(3,3)代入y=t-(t-%)得
1=產(chǎn)_”9『,
41
解得"二,
滿足條件的整數(shù)7有2,3,4共3個.
故答案為:3.
【點睛】本題考查了待定系數(shù)法求二次函數(shù)和反比例函數(shù)解析式,二次函數(shù)的圖象與性質(zhì),二次函數(shù)與反
比例函數(shù)的交點問題,以及解一元二次方程,數(shù)形結(jié)合是解答本題的關(guān)鍵.
23.如圖,在邊長為6的等邊三角形ABC中,動點尸從點A出發(fā),沿A3邊向終點3運動,同時,動點
。從點B出發(fā),沿邊向終點C運動,兩者速度均為每秒1個單位長度,運動時間為/;以尸。為直徑
(2)當(dāng)半圓。與除點。外,另有交點G時,若NQOG=30。,求/3PQ的度數(shù);
(3)直接寫出:當(dāng)方為何值時,半圓。正好與等邊三角形ABC的一邊相切.
【答案】(1)乃
(2)15°
⑶當(dāng)/=2或/=4或"3-"或"3+四時,半圓。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩冬季活動方案
- 感恩感謝活動方案
- 感恩父母輔導(dǎo)活動方案
- 感恩節(jié)物業(yè)公司活動方案
- 感染MDT活動方案
- 慈口老屋植樹節(jié)活動方案
- 慈善活動日活動方案
- 慈善活動宣傳活動方案
- 慰問官兵活動方案
- 慰問福利院公司活動方案
- GB/T 15231-2023玻璃纖維增強(qiáng)水泥性能試驗方法
- 外出提攜公章申請表
- 2023版押品考試題庫必考點含答案
- 【本田轎車燈光系統(tǒng)常見故障分析及排除8200字(論文)】
- 昆明天大礦業(yè)有限公司尋甸縣金源磷礦老廠箐-小凹子礦段(擬設(shè))采礦權(quán)出讓收益評估報告
- 尿動力學(xué)檢查操作指南2023版
- 夢幻西游古龍服務(wù)端安裝教程
- 食品安全地方標(biāo)準(zhǔn) 預(yù)制菜生產(chǎn)衛(wèi)生規(guī)范
- 亮化工程竣工驗收報告
- 《出生醫(yī)學(xué)證明》單親母親情況聲明
- PCS-915母差保護(hù)裝置介紹
評論
0/150
提交評論