河北省張家口市橋西區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁(yè)
河北省張家口市橋西區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁(yè)
河北省張家口市橋西區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁(yè)
河北省張家口市橋西區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁(yè)
河北省張家口市橋西區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省張家口市橋西區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB是定長(zhǎng)線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)2.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計(jì)如下表:最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,273.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°4.如果,那么代數(shù)式的值是()A.6 B.2 C.-2 D.-65.在平面直角坐標(biāo)系中,若點(diǎn)A(a,-b)在第一象限內(nèi),則點(diǎn)B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限6.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.7.已知∠BAC=45。,一動(dòng)點(diǎn)O在射線AB上運(yùn)動(dòng)(點(diǎn)O與點(diǎn)A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點(diǎn),那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>8.如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點(diǎn)O為圓心的一段弧,且,,所對(duì)的圓心角均為90°.甲、乙兩車(chē)由A口同時(shí)駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車(chē)到點(diǎn)O的距離y(m)與時(shí)間x(s)的對(duì)應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說(shuō)法錯(cuò)誤的是()A.甲車(chē)在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車(chē)從F口出,乙車(chē)從G口出 D.立交橋總長(zhǎng)為150m9.下列計(jì)算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a610.有理數(shù)a,b,c,d在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)>﹣4 B.bd>0 C.|a|>|b| D.b+c>0二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,已知正方形ABCD的邊長(zhǎng)為4,⊙B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣PC的最大值為_(kāi)____.12.如圖,直線y1=mx經(jīng)過(guò)P(2,1)和Q(-4,-2)兩點(diǎn),且與直線y2=kx+b交于點(diǎn)P,則不等式kx+b>mx>-2的解集為_(kāi)________________.13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點(diǎn),D點(diǎn)是射線AC上的一個(gè)動(dòng)點(diǎn),將△ADE沿線段DE翻折,得到△A′DE,當(dāng)A′D⊥AB時(shí),則線段AD的長(zhǎng)為_(kāi)____.14.若代數(shù)式x2﹣6x+b可化為(x+a)2﹣5,則a+b的值為_(kāi)___.15.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.16.若關(guān)于x的方程x2+x﹣a+=0有兩個(gè)不相等的實(shí)數(shù)根,則滿足條件的最小整數(shù)a的值是()A.﹣1 B.0 C.1 D.2三、解答題(共8題,共72分)17.(8分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.18.(8分)如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來(lái)的2倍,得到線段(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為).畫(huà)出線段;將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段.畫(huà)出線段;以為頂點(diǎn)的四邊形的面積是個(gè)平方單位.19.(8分)如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).(1)求一次函數(shù)和二次函數(shù)的解析式;(2)根據(jù)圖象直接寫(xiě)出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.20.(8分)隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.(1)本次調(diào)查的學(xué)生共有人,估計(jì)該校1200名學(xué)生中“不了解”的人數(shù)是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.21.(8分)(1)計(jì)算:;(2)化簡(jiǎn),然后選一個(gè)合適的數(shù)代入求值.22.(10分)某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖?,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:(說(shuō)明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)(1)寫(xiě)出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為;(2)該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在等級(jí)內(nèi);(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?23.(12分)如圖,直線l切⊙O于點(diǎn)A,點(diǎn)P為直線l上一點(diǎn),直線PO交⊙O于點(diǎn)C、B,點(diǎn)D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長(zhǎng).24.已知,拋物線y=ax2+c過(guò)點(diǎn)(-2,2)和點(diǎn)(4,5),點(diǎn)F(0,2)是y軸上的定點(diǎn),點(diǎn)B是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線l:y=kx+b經(jīng)過(guò)點(diǎn)B、F且交x軸于點(diǎn)A.(1)求拋物線的解析式;(2)①如圖1,過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時(shí),點(diǎn)F是線段AB的中點(diǎn);(3)如圖2,M(3,6)是拋物線內(nèi)部一點(diǎn),在拋物線上是否存在點(diǎn)B,使△MBF的周長(zhǎng)最?。咳舸嬖?,求出這個(gè)最小值及直線l的解析式;若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長(zhǎng)定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長(zhǎng)定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點(diǎn)睛】本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).2、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.3、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.4、A【解析】【分析】將所求代數(shù)式先利用單項(xiàng)式乘多項(xiàng)式法則、平方差公式進(jìn)行展開(kāi),然后合并同類項(xiàng),最后利用整體代入思想進(jìn)行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點(diǎn)睛】本題考查了代數(shù)式求值,涉及到單項(xiàng)式乘多項(xiàng)式、平方差公式、合并同類項(xiàng)等,利用整體代入思想進(jìn)行解題是關(guān)鍵.5、D【解析】

先根據(jù)第一象限內(nèi)的點(diǎn)的坐標(biāo)特征判斷出a、b的符號(hào),進(jìn)而判斷點(diǎn)B所在的象限即可.【詳解】∵點(diǎn)A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點(diǎn)B((a,b)在第四象限,故選D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是牢記平面直角坐標(biāo)系中各個(gè)象限內(nèi)點(diǎn)的符號(hào)特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù).6、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A7、C【解析】如下圖,設(shè)⊙O與射線AC相切于點(diǎn)D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時(shí)⊙O與射線AC有唯一公共點(diǎn)點(diǎn)D,若⊙O再向右移動(dòng),則⊙O與射線AC就沒(méi)有公共點(diǎn)了,∴x的取值范圍是.故選C.8、C【解析】分析:結(jié)合2個(gè)圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車(chē)在立交橋上共行駛時(shí)間為:,故正確.B.3段弧的長(zhǎng)度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車(chē)從G口出,乙車(chē)從F口出,故錯(cuò)誤.D.立交橋總長(zhǎng)為:故正確.故選C.點(diǎn)睛:考查圖象問(wèn)題,觀察圖象,讀懂圖象是解題的關(guān)鍵.9、D【解析】

根據(jù)合并同類項(xiàng)法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯(cuò)誤;B、(ab)2=a2b2,故B錯(cuò)誤;C、a2與a3不是同類項(xiàng),不能合并,故C錯(cuò)誤;D、(a2)3=a6,故D正確,故選D.【點(diǎn)睛】本題考查冪的乘方與積的乘方,合并同類項(xiàng),熟練掌握各運(yùn)算的運(yùn)算性質(zhì)和運(yùn)算法則是解題的關(guān)鍵.10、C【解析】

根據(jù)數(shù)軸上點(diǎn)的位置關(guān)系,可得a,b,c,d的大小,根據(jù)有理數(shù)的運(yùn)算,絕對(duì)值的性質(zhì),可得答案.【詳解】解:由數(shù)軸上點(diǎn)的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.【點(diǎn)睛】本題考查了有理數(shù)大小的比較、有理數(shù)的運(yùn)算,絕對(duì)值的性質(zhì),熟練掌握相關(guān)的知識(shí)是解題的關(guān)鍵二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】分析:由PD?PC=PD?PG≤DG,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點(diǎn)G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG==1.故答案為1點(diǎn)睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建相似三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,把問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短解決,題目比較難,屬于中考?jí)狠S題.12、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點(diǎn)縱坐標(biāo)y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標(biāo)x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時(shí),x的取值范圍為-4<x<1.

故答案為-4<x<1.

點(diǎn)睛:本題考查了一次函數(shù)與一元一次不等式,求出函數(shù)圖象的交點(diǎn)坐標(biāo)及函數(shù)與x軸的交點(diǎn)坐標(biāo)是解題的關(guān)鍵.13、或.【解析】

①延長(zhǎng)A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設(shè)AD=x,延長(zhǎng)A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點(diǎn),∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質(zhì)得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設(shè)AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長(zhǎng)為或.故答案為或.【點(diǎn)睛】此題考查了勾股定理,三角形相似,關(guān)鍵在于做輔助線14、1【解析】

根據(jù)題意找到等量關(guān)系x2﹣6x+b=(x+a)2﹣5,根據(jù)系數(shù)相等求出a,b,即可解題.【詳解】解:由題可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b=x2+2ax+a2-5,即-6=2a,b=a2-5,解得:a=-3,b=4,∴a+b=1.【點(diǎn)睛】本題考查了配方法的實(shí)際應(yīng)用,屬于簡(jiǎn)單題,找到等量關(guān)系求出a,b是解題關(guān)鍵.15、48°【解析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.16、D【解析】

根據(jù)根的判別式得到關(guān)于a的方程,求解后可得到答案.【詳解】關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,則解得:滿足條件的最小整數(shù)的值為2.故選D.【點(diǎn)睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,理解并能運(yùn)用根的判別式得出方程是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明詳見(jiàn)解析;(2)證明詳見(jiàn)解析;(3)1.【解析】

(1)利用平行線的性質(zhì)及中點(diǎn)的定義,可利用AAS證得結(jié)論;

(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長(zhǎng),利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點(diǎn),

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.

∵AD為BC邊上的中線

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),

∴AD=DC=BC,

∴四邊形ADCF是菱形;

(3)連接DF,

∵AF∥BD,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S菱形ADCF=AC?DF=×4×5=1.【點(diǎn)睛】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應(yīng)用.18、(1)畫(huà)圖見(jiàn)解析;(2)畫(huà)圖見(jiàn)解析;(3)20【解析】【分析】(1)結(jié)合網(wǎng)格特點(diǎn),連接OA并延長(zhǎng)至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結(jié)合網(wǎng)格特點(diǎn)根據(jù)旋轉(zhuǎn)作圖的方法找到A2點(diǎn),連接A2B1即可得;(3)根據(jù)網(wǎng)格特點(diǎn)可知四邊形AA1B1A2是正方形,求出邊長(zhǎng)即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結(jié)合網(wǎng)格特點(diǎn)易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點(diǎn)睛】本題考查了作圖-位似變換,旋轉(zhuǎn)變換,能根據(jù)位似比、旋轉(zhuǎn)方向和旋轉(zhuǎn)角得到關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是作圖的關(guān)鍵.19、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】

(1)根據(jù)待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式即可.(2)根據(jù)圖象以及點(diǎn)A,B兩點(diǎn)的坐標(biāo)即可求出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)連接AC、BC,設(shè)直線AB交y軸于點(diǎn)D,根據(jù)即可求出△ABC的面積.【詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據(jù)圖象得:使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設(shè)直線AB交y軸于點(diǎn)D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,三角形的面積公式等,掌握待定系數(shù)法是解題的關(guān)鍵.20、(1)50,360;(2).【解析】試題分析:(1)根據(jù)圖示,可由非常了解的人數(shù)和所占的百分比直接求解總?cè)藬?shù),然后根據(jù)求出不了解的百分比估計(jì)即可;(2)根據(jù)題意畫(huà)出樹(shù)狀圖,然后求出總可能和“一男一女”的可能,再根據(jù)概率的意義求解即可.試題解析:(1)由餅圖可知“非常了解”為8%,由柱形圖可知(條形圖中可知)“非常了解”為4人,故本次調(diào)查的學(xué)生有(人)由餅圖可知:“不了解”的概率為,故1200名學(xué)生中“不了解”的人數(shù)為(人)(2)樹(shù)狀圖:由樹(shù)狀圖可知共有12種結(jié)果,抽到1男1女分別為共8種.∴考點(diǎn):1、扇形統(tǒng)計(jì)圖,2、條形統(tǒng)計(jì)圖,3、概率21、(1)0;(2),答案不唯一,只要x≠±1,0即可,當(dāng)x=10時(shí),.【解析】

(1)根據(jù)有理數(shù)的乘方法則、零次冪的性質(zhì)、特殊角的三角函數(shù)值計(jì)算即可;(2)先把括號(hào)內(nèi)通分,再把除法運(yùn)算化為乘法運(yùn)算,然后約分,再根據(jù)分式有意義的條件把x=10代入計(jì)算即可.【詳解】解:(1)原式==1﹣3+2+1﹣1=0;(2)原式==由題意可知,x≠1∴當(dāng)x=10時(shí),原式==.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值;分式的化簡(jiǎn)求值,掌握計(jì)算法則正確計(jì)算是本題的解題關(guān)鍵.22、(1)4%;(2)72°;(3)380人【解析】

(1)根據(jù)A級(jí)人數(shù)及百分?jǐn)?shù)計(jì)算九年級(jí)(1)班學(xué)生人數(shù),用總?cè)藬?shù)減A、B、D級(jí)人數(shù),得C級(jí)人數(shù),再用C級(jí)人數(shù)÷總?cè)藬?shù)×360°,得C等級(jí)所在的扇形圓心角的度數(shù);(2)將人數(shù)按級(jí)排列,可得該班學(xué)生體育測(cè)試成績(jī)的中位數(shù);(3)用(A級(jí)百分?jǐn)?shù)+B級(jí)百分?jǐn)?shù))×1900,得這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有的人數(shù);(4)根據(jù)各等級(jí)人數(shù)多少,設(shè)計(jì)合格的等級(jí),使大多數(shù)人能合格.【詳解】解:(1)九年級(jí)(1)班學(xué)生人數(shù)為13÷26%=50人,C級(jí)人數(shù)為50-13-25-2=10人,C等級(jí)所在的扇形圓心角的度數(shù)為10÷50×360°=72°,故答案為72°;(2)共50人,其中A級(jí)人數(shù)13人,B級(jí)人數(shù)25人,故該班學(xué)生體育測(cè)試成績(jī)的中位數(shù)落在B等級(jí)內(nèi),故答案為B;(3)估計(jì)這次考試中獲得A級(jí)和B級(jí)的九年級(jí)學(xué)生共有(26%+25÷50)×1900=1444人;(4)建議:把到達(dá)A級(jí)和B級(jí)的學(xué)生定為合格,(答案不唯一).23、(1)見(jiàn)解析;(2)AC=1.【解析】

(1)要證明DB為⊙O的切線,只要證明∠OBD=90即可.(2)根據(jù)已知及直角三角形的性質(zhì)可以得到PD=2BD=2DA=2,再利用等角對(duì)等邊可以得到AC=AP,這樣求得AP的值就得出了AC的長(zhǎng).【詳解】(1)證明:連接OD;∵PA為⊙O切線,∴∠OAD=90°;在△OAD和△OBD中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB為⊙O的切線(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.【點(diǎn)睛】本題考查了切線的判定及性質(zhì),全等三全角形的判定等知識(shí)點(diǎn)的掌握情況.24、(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論