云南省麗江市玉龍縣第一中學2024屆高三第二次聯(lián)考數(shù)學試卷含解析_第1頁
云南省麗江市玉龍縣第一中學2024屆高三第二次聯(lián)考數(shù)學試卷含解析_第2頁
云南省麗江市玉龍縣第一中學2024屆高三第二次聯(lián)考數(shù)學試卷含解析_第3頁
云南省麗江市玉龍縣第一中學2024屆高三第二次聯(lián)考數(shù)學試卷含解析_第4頁
云南省麗江市玉龍縣第一中學2024屆高三第二次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省麗江市玉龍縣第一中學2024屆高三第二次聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A. B.1 C.-1 D.02.已知是虛數(shù)單位,若,則()A. B.2 C. D.103.已知向量,,則與的夾角為()A. B. C. D.4.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.5.設等比數(shù)列的前項和為,若,則的值為()A. B. C. D.6.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.7.“是函數(shù)在區(qū)間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸9.我國古代數(shù)學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.110.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π11.函數(shù)()的圖象的大致形狀是()A. B. C. D.12.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.若復數(shù)滿足,其中為虛數(shù)單位,則的共軛復數(shù)在復平面內對應點的坐標為_____.14.若,,則___________.15.已知函數(shù),則曲線在點處的切線方程是_______.16.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.18.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.19.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內產(chǎn)品均合格,若檢驗不合格,則說明該組內有不合格產(chǎn)品,再對該組內每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).20.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.21.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.22.(10分)設函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】

根據(jù)復數(shù)模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數(shù)模的定義及復數(shù)模的性質,屬于容易題.3、B【解析】

由已知向量的坐標,利用平面向量的夾角公式,直接可求出結果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.4、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.5、C【解析】

求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設等比數(shù)列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數(shù)列求和公式的應用,解答的關鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎題.6、D【解析】

作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.7、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.8、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.9、B【解析】

將問題轉化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.10、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.11、C【解析】

對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關函數(shù)模型,利用這一函數(shù)模型來分析解決問題.12、C【解析】

取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數(shù)在復平面內對應點的坐標為,故答案為【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義準確計算是關鍵,是基礎題.14、【解析】

因為,所以,又,所以,則,所以.15、【解析】

求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.18、(1)證明見詳解;(2).【解析】

(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結,,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結,,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標系,如下圖所示:則,,,,,,,,設平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.19、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.20、(1);(2).【解析】

(1)根據(jù)成等差數(shù)列與三角形內角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據(jù)三角形內角和與余弦的兩角和公式與等比數(shù)列的性質可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關系與正弦定理可求得,再結合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡得,因為,故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負的舍去),可得銳角;由可得,由為銳角,解得,因為為銳角,故可得,由正弦定理可得,又的面積為可得,解得.【點睛】本題主要考查了等差等比中項的運用以及正切的和差角公式以及同角三角函數(shù)關系等.同時也考查了正弦定理與面積公式在解三角形中的運用,屬于中檔題.21、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論