有理數(shù)整式教案_第1頁
有理數(shù)整式教案_第2頁
有理數(shù)整式教案_第3頁
有理數(shù)整式教案_第4頁
有理數(shù)整式教案_第5頁
已閱讀5頁,還剩92頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2016-2017學(xué)年七年級(jí)(上)數(shù)學(xué)教案宋樹才七年級(jí)數(shù)學(xué)上冊(cè)教學(xué)計(jì)劃(2016--2017學(xué)年度第一學(xué)期)一、指導(dǎo)思想:本班學(xué)生剛剛完成小學(xué)六年的學(xué)習(xí),升入初一,也就是我們現(xiàn)在所說的七年級(jí)。通過調(diào)閱小六畢業(yè)會(huì)考成績冊(cè)和試卷,發(fā)現(xiàn)本班學(xué)生的數(shù)學(xué)成績不甚理想。從學(xué)生作答來看,基礎(chǔ)知識(shí)不扎實(shí),計(jì)算能力較差,思路不靈活,缺乏創(chuàng)新思維能力,尤其是解難題的能力低下??傮w上來看,低分很多,兩極分化較為嚴(yán)重。二、情況分析:學(xué)生情況分析:全面貫徹黨的十七大教育方針,堅(jiān)決完成《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》提出的各項(xiàng)基本教學(xué)目標(biāo)。根據(jù)學(xué)生的實(shí)際情況,從生活入手,結(jié)合教材內(nèi)容,精心設(shè)計(jì)教學(xué)方案。通過本學(xué)期數(shù)學(xué)課堂教學(xué),夯實(shí)學(xué)生的基礎(chǔ),提高學(xué)生的基本技能,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)和運(yùn)用數(shù)學(xué)知識(shí)的能力,幫助學(xué)生初步建立數(shù)學(xué)思維模式。最終圓滿完成七年級(jí)上冊(cè)數(shù)學(xué)教學(xué)任務(wù)。三、教學(xué)目標(biāo)知識(shí)與技能目標(biāo):認(rèn)識(shí)有理數(shù)和代數(shù)式,掌握有理數(shù)的各種性質(zhì)和運(yùn)算法則,初步學(xué)會(huì)使用代數(shù)式探究數(shù)量之間的關(guān)系。認(rèn)識(shí)基本幾何圖形,掌握基本基本作圖能力和的技巧。過程與方法目標(biāo):學(xué)會(huì)抽取實(shí)際問題中的數(shù)學(xué)信息,發(fā)展幾何思維模式。培養(yǎng)學(xué)生的觀察和思維能力,尤其是自主探索的能力。情感與態(tài)度目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,認(rèn)識(shí)數(shù)學(xué)源自生活實(shí)踐,最終回歸生活。班級(jí)教學(xué)目標(biāo):優(yōu)秀率:20%,合格率70%。四、教材分析第一章、有理數(shù):本章主要學(xué)習(xí)有理數(shù)的基本性質(zhì)及運(yùn)算。本章重點(diǎn)內(nèi)容是有理數(shù)的概念,性質(zhì)和運(yùn)算。本章的難點(diǎn)在于理解有理數(shù)的基本性質(zhì)、運(yùn)算法則,并將它們應(yīng)用到解決實(shí)際問題和計(jì)算中。第二章、整式的加減:本章主要是學(xué)習(xí)單項(xiàng)式和多項(xiàng)式的加減運(yùn)算。本章重點(diǎn)內(nèi)容是單項(xiàng)式、多項(xiàng)式、同類項(xiàng)的概念;合并同類項(xiàng)及去括號(hào)的法則及整式的加減運(yùn)算。本章難點(diǎn)在于理解合并同類項(xiàng)和去括號(hào)的法則。第三章、一元一次方程:本章主要學(xué)習(xí)一元一次方程的概念、等式的基本性質(zhì)、一元一次方程的解法及應(yīng)用。本章重點(diǎn)內(nèi)容是理解等式的基本性質(zhì);掌握解一元一次方程的一般步驟;列方程解決實(shí)際問題的基本思路。本章難點(diǎn)在于解一元一次方程,并利用一元一次方程解決簡(jiǎn)單的實(shí)際問題。第四章、圖形認(rèn)識(shí)初步:本章主要學(xué)習(xí)線段和角有關(guān)的性質(zhì)。本章的重點(diǎn)是區(qū)別直線、射線、線段,角的有關(guān)性質(zhì)和計(jì)算;理解互為余角、互為補(bǔ)角的性質(zhì)及應(yīng)用。本章的難點(diǎn)在于線段和角的有關(guān)計(jì)算。五、教學(xué)措施1、認(rèn)真研讀新課程標(biāo)準(zhǔn),潛心鉆研教材,根據(jù)新課程標(biāo)準(zhǔn),結(jié)合學(xué)生實(shí)際情況,進(jìn)行針對(duì)性的備課,精心設(shè)置課堂教學(xué)內(nèi)容和模式。上好每一堂課,閱好每一份試卷,搞好每一節(jié)輔導(dǎo),組織好每一次測(cè)驗(yàn)。2、開展豐富多彩的課外活動(dòng),課外調(diào)查,向?qū)W生介紹數(shù)學(xué)家、數(shù)學(xué)史、數(shù)學(xué)趣題,喻教于樂,激發(fā)學(xué)生的學(xué)習(xí)興趣,挖掘?qū)W生的潛能,培養(yǎng)數(shù)學(xué)特長生。3、開展分層教學(xué)實(shí)驗(yàn),使不同的學(xué)生學(xué)到不同的知識(shí),使人人能學(xué)到有用的知識(shí),使不同的人得到不同的發(fā)展,獲得成功感,使優(yōu)生更優(yōu),差生逐漸趕上。六、課時(shí)安排教學(xué)進(jìn)度計(jì)劃安排如下:周序 時(shí)間 教學(xué)內(nèi)容 課時(shí)安排第一周 正數(shù)和負(fù)數(shù)及有理數(shù) 5課時(shí)第二周 有理數(shù)的加減法 5課時(shí)第三周 有理數(shù)的乘法 5課時(shí)第四周 有理數(shù)的乘方 5課時(shí)第五周 第一單元復(fù)習(xí)及月考 5課時(shí)第六周 月考測(cè)試質(zhì)量分析及月考小結(jié) 5課時(shí)第七周 整式-----單項(xiàng)式 5課時(shí)第八周 整式----多項(xiàng)式 5課時(shí)第九周 整式的加減 5課時(shí)第十周 期中復(fù)習(xí)及段考 5課時(shí)第十一周 段考測(cè)試質(zhì)量分析及月考小結(jié) 5課時(shí)第十二周 從算式到方程 5課時(shí)第十三周 解一元一次方程(一) 5課時(shí)第十四周 解一元一次方程(二) 5課時(shí)第十五周 實(shí)際問題與一元一次方程 5課時(shí)第十六周 第三單元復(fù)習(xí)及月考 5課時(shí)第十七周 月考測(cè)試質(zhì)量分析及月考小結(jié) 5課時(shí)第十八周 多姿多彩的圖形及直線 5課時(shí)第十九周 射線、線段、角 5課時(shí)第二十周 期末復(fù)習(xí)及考試 5課時(shí)第一章有理數(shù)單元教學(xué)內(nèi)容1.本單元結(jié)合學(xué)生的生活經(jīng)驗(yàn),列舉了學(xué)生熟悉的用正、負(fù)數(shù)表示的實(shí)例,從擴(kuò)充運(yùn)算的角度引入負(fù)數(shù),然后再指出可以用正、負(fù)數(shù)表示現(xiàn)實(shí)生活中具有相反意義的量,使學(xué)生感受到負(fù)數(shù)的引入是來自實(shí)際生活的需要,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系.引入正、負(fù)數(shù)概念之后,接著給出正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)集合及整數(shù)、分?jǐn)?shù)和有理數(shù)的概念.2.通過怎樣用數(shù)簡(jiǎn)明地表示一條東西走向的馬路旁的樹、電線桿與汽車站的相對(duì)位置關(guān)系引入數(shù)軸.?dāng)?shù)軸是非常重要的數(shù)學(xué)工具,它可以把所有的有理數(shù)用數(shù)軸上的點(diǎn)形象地表示出來,使數(shù)與形結(jié)合為一體,揭示了數(shù)形之間的內(nèi)在聯(lián)系,從而體現(xiàn)出以下4個(gè)方面的作用:(1)數(shù)軸能反映出數(shù)形之間的對(duì)應(yīng)關(guān)系.(2)數(shù)軸能反映數(shù)的性質(zhì).(3)數(shù)軸能解釋數(shù)的某些概念,如相反數(shù)、絕對(duì)值、近似數(shù).(4)數(shù)軸可使有理數(shù)大小的比較形象化.3.對(duì)于相反數(shù)的概念,從“數(shù)軸上表示互為相反數(shù)的兩點(diǎn)分別在原點(diǎn)的兩旁,且離開原點(diǎn)的距離相等”來說明相反數(shù)的幾何意義,同時(shí)補(bǔ)充“零的相反數(shù)是零”作為相反數(shù)意義的一部分.4.正確理解絕對(duì)值的概念是難點(diǎn).根據(jù)有理數(shù)的絕對(duì)值的兩種意義,可以歸納出有理數(shù)的絕對(duì)值有如下性質(zhì):(1)任何有理數(shù)都有唯一的絕對(duì)值.(2)有理數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),即最小的絕對(duì)值是零.(3)兩個(gè)互為相反數(shù)的絕對(duì)值相等,即│a│=│-a│.(4)任何有理數(shù)都不大于它的絕對(duì)值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,則a=b,或a=-b或a=b=0.三維目標(biāo)1.知識(shí)與技能(1)了解正數(shù)、負(fù)數(shù)的實(shí)際意義,會(huì)判斷一個(gè)數(shù)是正數(shù)還是負(fù)數(shù).(2)掌握數(shù)軸的畫法,能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點(diǎn)所表示的解.(3)理解相反數(shù)、絕對(duì)值的幾何意義和代數(shù)意義,會(huì)求一個(gè)數(shù)的相反數(shù)和絕對(duì)值.(4)會(huì)利用數(shù)軸和絕對(duì)值比較有理數(shù)的大小.2.過程與方法經(jīng)過探索有理數(shù)運(yùn)算法則和運(yùn)算律的過程,體會(huì)“類比”、“轉(zhuǎn)化”、“數(shù)形結(jié)合”等數(shù)學(xué)方法.3.情感態(tài)度與價(jià)值觀使學(xué)生感受數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,鼓勵(lì)學(xué)生探索規(guī)律,并在合作交流中完善規(guī)范語言.重、難點(diǎn)與關(guān)鍵1.重點(diǎn):正確理解有理數(shù)、相反數(shù)、絕對(duì)值等概念;會(huì)用正、負(fù)數(shù)表示具有相反意義的量,會(huì)求一個(gè)數(shù)的相反數(shù)和絕對(duì)值.2.難點(diǎn):準(zhǔn)確理解負(fù)數(shù)、絕對(duì)值等概念.3.關(guān)鍵:正確理解負(fù)數(shù)的意義和絕對(duì)值的意義.課時(shí)劃分1.1正數(shù)和負(fù)數(shù)2課時(shí)1.2有理數(shù)5課時(shí)1.3有理數(shù)的加減法4課時(shí)1.4有理數(shù)的乘除法5課時(shí)1.5有理數(shù)的乘方4課時(shí)第一章有理數(shù)(復(fù)習(xí))2課時(shí)1.1正數(shù)和負(fù)數(shù)第一課時(shí)九月五日三維目標(biāo)一.知識(shí)與技能能判斷一個(gè)數(shù)是正數(shù)還是負(fù)數(shù),能用正數(shù)或負(fù)數(shù)表示生活中具有相反意義的量.二.過程與方法借助生活中的實(shí)例理解有理數(shù)的意義,體會(huì)負(fù)數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性.三.情感態(tài)度與價(jià)值觀培養(yǎng)學(xué)生積極思考,合作交流的意識(shí)和能力.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):正確理解負(fù)數(shù)的意義,掌握判斷一個(gè)數(shù)是正數(shù)還是負(fù)數(shù)的方法.2.難點(diǎn):正確理解負(fù)數(shù)的概念.3.關(guān)鍵:創(chuàng)設(shè)情境,充分利用學(xué)生身邊熟悉的事物,加深對(duì)負(fù)數(shù)意義的理解.教具準(zhǔn)備投影儀.教學(xué)過程四、課堂引入我們知道,數(shù)是人們?cè)趯?shí)際生活和生活需要中產(chǎn)生,并不斷擴(kuò)充的.人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,…;為了表示“沒有物體”、“空位”引進(jìn)了數(shù)“0”,測(cè)量和分配有時(shí)不能得到整數(shù)的結(jié)果,為此產(chǎn)生了分?jǐn)?shù)和小數(shù).在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運(yùn)算的問題,例如課本第2頁至第3頁中提到的四個(gè)問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實(shí)際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.五、講授新課(1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負(fù)號(hào)“-”的數(shù))叫做負(fù)數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負(fù)數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0以外的數(shù))叫做正數(shù),有時(shí)在正數(shù)前面也加上“+”(正)號(hào),例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一個(gè)數(shù)前面的“+”、“-”號(hào)叫做它的符號(hào),這種符號(hào)叫做性質(zhì)符號(hào).(2)、中國古代用算籌(表示數(shù)的工具)進(jìn)行計(jì)算,紅色算籌表示正數(shù),黑色算籌表示負(fù)數(shù).(3)、數(shù)0既不是正數(shù),也不是負(fù)數(shù),但0是正數(shù)與負(fù)數(shù)的分界數(shù).(4)、0可以表示沒有,還可以表示一個(gè)確定的量,如今天氣溫是0℃,是指一個(gè)確定的溫度;海拔0表示海平面的平均高度.用正負(fù)數(shù)表示具有相反意義的量(5)、把0以外的數(shù)分為正數(shù)和負(fù)數(shù),起源于表示兩種相反意義的量.正數(shù)和負(fù)數(shù)在許多方面被廣泛地應(yīng)用.在地形圖上表示某地高度時(shí),需要以海平面為基準(zhǔn),通常用正數(shù)表示高于海平面的某地的海拔高度,負(fù)數(shù)表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時(shí),通常用正數(shù)表示收入款額,負(fù)數(shù)表示支出款額.(6)、請(qǐng)學(xué)生解釋課本中圖1.1-2,圖1.1-3中的正數(shù)和負(fù)數(shù)的含義.(7)、你能再舉一些用正負(fù)數(shù)表示數(shù)量的實(shí)際例子嗎?(8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負(fù)數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負(fù)數(shù)表示水位下降的高度;用正數(shù)表示買進(jìn)東西的數(shù)量,用負(fù)數(shù)表示賣出東西的數(shù)量.六、鞏固練習(xí)課本第3頁,練習(xí)1、2、3、4題.七、課堂小結(jié)為了表示現(xiàn)實(shí)生活中的具有相反意義的量,我們引進(jìn)了負(fù)數(shù).正數(shù)就是我們過去學(xué)過的數(shù)(除0外),在正數(shù)前放上“-”號(hào),就是負(fù)數(shù),但不能說:“帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù)”,在一個(gè)數(shù)前面添上負(fù)號(hào),它表示的是原數(shù)意義相反的數(shù).如果原數(shù)是一個(gè)負(fù)數(shù),那么前面放上“-”號(hào)后所表示的數(shù)反而是正數(shù)了,另外應(yīng)注意“0”既不是正數(shù),也不是負(fù)數(shù).八、作業(yè)布置1.課本第5頁習(xí)題1.1復(fù)習(xí)鞏固第1、2、3題.九、板書設(shè)計(jì)1.1正數(shù)和負(fù)數(shù)第一課時(shí)1、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負(fù)號(hào)“-”的數(shù))叫做負(fù)數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負(fù)數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0以外的數(shù))叫做正數(shù),有時(shí)在正數(shù)前面也加上“+”(正)號(hào),例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一個(gè)數(shù)前面的“+”、“-”號(hào)叫做它的符號(hào),這種符號(hào)叫做性質(zhì)符號(hào).2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思1、重視學(xué)生對(duì)概念的建構(gòu)過程:對(duì)于“正數(shù)和負(fù)數(shù)”這一課題而言,課題本身很新,學(xué)生的感知也很有限。但在備課的過程中,本人自始至終重視學(xué)生對(duì)概念的建構(gòu)過程;概念引入階段,教師引導(dǎo)學(xué)生記錄具有相反意義的三組數(shù)量,并通過有序反饋,引導(dǎo)學(xué)生充分討論、比較,使學(xué)生親身經(jīng)歷了一個(gè)數(shù)學(xué)化、符號(hào)化的過程,而且產(chǎn)生了強(qiáng)烈的學(xué)習(xí)需求,自然地引出課題;直觀感知階段,教師借助溫度情境,通過課件讓學(xué)生直觀地認(rèn)識(shí)溫度計(jì)上所表示的度數(shù)這一環(huán)節(jié),學(xué)生的觀察能力強(qiáng),能通過溫度計(jì)上讀寫出所表示的攝氏度,并說出各攝氏度所表示的意義,比較溫度的大小等,順利完成了對(duì)概念的初步建構(gòu)。鞏固拓展階段,師生一起討論了“電梯中的正、負(fù)數(shù)”、“海拔高度中的正、負(fù)數(shù)”、“方向中的正負(fù)數(shù)”等實(shí)際情景中的問題,不僅了解負(fù)數(shù)在生活中的廣泛應(yīng)用,嘗試應(yīng)用正、負(fù)數(shù)表示生活中具有相反意義的量,而且更重要的是使學(xué)生在參與中明確感悟到正、負(fù)數(shù)的應(yīng)用價(jià)值。2、重視數(shù)學(xué)與生活的密切聯(lián)系:在這堂課中,我充分挖掘了學(xué)生生活中喜聞樂見的素材,每個(gè)情境的設(shè)計(jì)都與學(xué)生的生活密切相關(guān)并為教學(xué)目標(biāo)服務(wù)。再加上多個(gè)實(shí)際參與的環(huán)節(jié)設(shè)計(jì)和教師平實(shí)、細(xì)致的組織、引導(dǎo),使得學(xué)生在課堂上參與的積極性很高,不斷的嘗試用數(shù)學(xué)的眼光分析和解決生活中的現(xiàn)象和問題,不僅取得了良好的教學(xué)效果,而且讓學(xué)生伴隨著學(xué)習(xí)過程,親身體悟了數(shù)學(xué)學(xué)習(xí)的價(jià)值、數(shù)學(xué)學(xué)習(xí)的魅力。教師語言的精練性以及指向性作為一名數(shù)學(xué)教師,語言的精練性以及指向性直接影響著學(xué)生的思維,影響著教學(xué)的效果。本節(jié)課我在教學(xué)中提出的問題指向性不強(qiáng),造成學(xué)生不知所問;在課后聽課教師的反饋中知道,多數(shù)老師也都十分關(guān)注教師語言的表達(dá)。在課堂上,不論是從思維的實(shí)際價(jià)值上,還是從所提問題的指向性上都顯示出了教師語言在課堂上的重要地位。在尊重學(xué)生,了解學(xué)生,把握學(xué)生認(rèn)知水平的前提下,如何使教師的提問更具有啟發(fā)性,如何使學(xué)生在教師的引導(dǎo)下能有充分的體驗(yàn),能有足夠的思維空間,這應(yīng)該是每位教師在今后工作中不斷思考的問題。3、把握好預(yù)設(shè)與生成的關(guān)系,讓學(xué)生在課堂上出現(xiàn)的問題成為有效的教學(xué)資源同樣的一篇教學(xué)設(shè)計(jì),為什么名師、名家能上的有滋有味,而有的老師上的卻只能是一杯白開水?一方面的原因取決于教師對(duì)知識(shí)的深入理解、對(duì)教材的把握,而更重要的是名師、名家能在課堂上關(guān)注學(xué)生,能順應(yīng)學(xué)生的思維并把學(xué)生生成性的問題作為課堂上的有效資源來對(duì)待。在本節(jié)課后的反饋得知,針對(duì)學(xué)生是否動(dòng)手撥溫度計(jì)的問題或直觀認(rèn)識(shí)溫度計(jì)以及學(xué)生對(duì)0的歸屬理解過程中的問題,教師都不約而同地發(fā)表了自己的意見和建議。每個(gè)學(xué)生的認(rèn)識(shí)水平不同,思維水平也存在著明顯的差異。教師課前預(yù)期的設(shè)計(jì)有既定的目標(biāo),這是必要的,也是要充分考慮的。但怎樣在實(shí)際課堂教學(xué)中更好地順應(yīng)學(xué)生的思維,把握學(xué)生生成的一些問題并轉(zhuǎn)化為有效的教學(xué)資源,有賴于教師先進(jìn)的教學(xué)理念、良好的教學(xué)素養(yǎng)和機(jī)智的駕馭技巧。這就要求教師在課堂上隨時(shí)提醒自己,傾聽學(xué)生的發(fā)言、關(guān)注學(xué)生的表情、關(guān)注學(xué)生的思維;敢于抓住新舊知識(shí)的結(jié)合點(diǎn)、矛盾沖突的碰撞點(diǎn)和學(xué)生認(rèn)知的困惑點(diǎn),及時(shí)的加以放大,努力使問題公開化、明確化,讓更多的學(xué)生參與到問題的討論中來。課堂教學(xué)不是表演,讓數(shù)學(xué)課更加真實(shí)、自然,貼近生活,讓數(shù)學(xué)課更加適應(yīng)學(xué)生發(fā)展的需要,應(yīng)該是我們每一位數(shù)學(xué)教師共同思考的問題。1.1正數(shù)和負(fù)數(shù)第二課時(shí)九月六日三維目標(biāo)一.知識(shí)與技能進(jìn)一步鞏固正數(shù)、負(fù)數(shù)的概念;理解在同一個(gè)問題中,用正數(shù)與負(fù)數(shù)表示的量具有相同的意義.二.過程與方法經(jīng)歷舉一反三用正、負(fù)數(shù)表示身邊具有相反意義的量,進(jìn)而發(fā)現(xiàn)它們的共同特征.三.情感態(tài)度與價(jià)值觀鼓勵(lì)學(xué)生積極思考,激發(fā)學(xué)生學(xué)習(xí)的興趣.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):正確理解正、負(fù)數(shù)的概念,能應(yīng)用正數(shù)、負(fù)數(shù)表示生活中具有相反意義的量.2.難點(diǎn):正數(shù)、負(fù)數(shù)概念的綜合運(yùn)用.3.關(guān)鍵:通過對(duì)實(shí)例的進(jìn)一步分析,使學(xué)生認(rèn)識(shí)到正負(fù)數(shù)可以用來表示現(xiàn)實(shí)生活中具有相反意義的量.教具準(zhǔn)備投影儀.教學(xué)過程四、復(fù)習(xí)提問課堂引入1.什么叫正數(shù)?什么叫負(fù)數(shù)?舉例說明,有沒有既不是正數(shù)也不是負(fù)數(shù)的數(shù)?2.如果用正數(shù)表示盈利5萬元,那么-8千元表示什么?五、新授例1.一個(gè)月內(nèi),小明體重增加2kg,小華體重減少1kg,小強(qiáng)體重?zé)o變化,寫出他們這個(gè)月的體重增長值.2.20XX年下列國家的商品進(jìn)出口總額比上年的變化情況是:美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,中國增長7.5%.寫出這些國家20XX年商品進(jìn)出口總額的增長率.分析:在一個(gè)數(shù)前面添上負(fù)號(hào),它表示的是與原數(shù)具有意義相反的數(shù).“負(fù)”與“正”是相對(duì)的,增長-1,就是減少1;增長-6.4%就是減少6.4%,那么什么情況下增長率是0?當(dāng)與上年持平,既不增又不減時(shí)增長率是0.解:1.這個(gè)月小明體重增長2kg,小華體重增長-1kg,小強(qiáng)體重增長0kg.2.六個(gè)國家20XX年商品進(jìn)出口總額的增長率分別為:美國-6.4%,德國1.3%,法國-2.4%,英國-3.5%,意大利0.2%,中國7.5%.歸納:在同一個(gè)問題中,分別用正數(shù)與負(fù)數(shù)表示的量具有相反的意義,如盈利-2千元,就是虧本2千元;前進(jìn)-3米,就是后退3米;浪費(fèi)-14元,就是節(jié)約14元;向南走-7米,就是向北走7米,因此盈利2千元與盈利-2千元具有相反的意義.六、鞏固練習(xí)1.課本第5頁的第8題.點(diǎn)撥:增長-3.4%,就是減少3.4%,所以這一年里這六國中中國、意大利的服務(wù)出口額增長了,美國、德國、英國、日本的服務(wù)出口額都減少了,意大利增長最多,日本減少最多.2.補(bǔ)充練習(xí).若向西走10米,記作-10米,如果一個(gè)人從A地先走12米,再走-15米,你能判斷此人這時(shí)在何處嗎?解:向西走10米,記作-10米,那么這人走12米,則表示向東走12米,再走-15米,表示向西走了15米,即這個(gè)人從A地先向東走12米,接著再向西走15米,此人這時(shí)應(yīng)該在A地的西方3米處.七、課堂小結(jié)通過本節(jié)課的學(xué)習(xí),你對(duì)正數(shù)、負(fù)數(shù)的概念是否有了進(jìn)一步理解?請(qǐng)你用正負(fù)數(shù)表示身邊具有相反數(shù)的量.八、作業(yè)布置1.課本第5頁習(xí)題1.1第4、5、6、7題.九、板書設(shè)計(jì)九、板書設(shè)計(jì)1.1正數(shù)和負(fù)數(shù)第二課時(shí)1、復(fù)習(xí)鞏固,例題講解。2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思寫負(fù)數(shù)時(shí)丟掉-號(hào),表示相反量時(shí)多些-號(hào)。向東記+,向西寫作-5米。1.2有理數(shù)第一課時(shí)九月七日三維目標(biāo)一、知識(shí)與能力理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會(huì)判別一個(gè)有理數(shù)是整數(shù)還是分?jǐn)?shù),是正數(shù)、負(fù)數(shù)還是零.二、過程與方法經(jīng)歷對(duì)有理數(shù)進(jìn)行分類的探索過程,初步感受分類討論的思想.三、情感態(tài)度與價(jià)值觀通過對(duì)有理數(shù)的學(xué)習(xí),體會(huì)到數(shù)學(xué)與現(xiàn)實(shí)世界的緊密聯(lián)系.教學(xué)重難點(diǎn)及突破在引入了負(fù)數(shù)后,本課對(duì)所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí),使學(xué)生了解分類的思想并進(jìn)行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開.教學(xué)準(zhǔn)備用電腦制作動(dòng)畫體現(xiàn)有理數(shù)的分類過程.教學(xué)過程四、課堂引入1、我們把小學(xué)里學(xué)過的數(shù)歸納為整數(shù)與分?jǐn)?shù),引進(jìn)了負(fù)數(shù)以后,我們學(xué)過的數(shù)有哪些?將如何歸類?2.舉例說明現(xiàn)實(shí)中具有相反意義的量.3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意義?4.舉兩個(gè)例子說明+5與-5的區(qū)別.5.?dāng)?shù)0表示的意義是什么?二、自主探究在學(xué)生討論的基礎(chǔ)上,引導(dǎo)學(xué)生自己進(jìn)行有理數(shù)的分類,我們學(xué)過的數(shù)就可以分為以下幾類:正整數(shù),如1,2,3,…;零:0;負(fù)整數(shù),如-1,-2,-3,…;正分?jǐn)?shù),如,,4.5(即4);負(fù)分?jǐn)?shù),如-,-2,-0.3(即-),-……正整數(shù)、零和負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).回答下列各題:(1)0是不是整數(shù)?0是不是有理數(shù)?(2)-5是不是整數(shù)?-5是不是有理數(shù)?(3)-0.3是不是負(fù)分?jǐn)?shù)?-0.3是不是有理數(shù)?2.你能對(duì)以上各種數(shù)作出一張分類表嗎(要求不重復(fù)不遺漏)?讓學(xué)生把自己作出的分類表進(jìn)行分類,可以根據(jù)不同需要,用不同的分類標(biāo)準(zhǔn),但必須對(duì)討論對(duì)象不重不漏地分類.把一些數(shù)放在一起,就組成一個(gè)數(shù)的集合,簡(jiǎn)稱數(shù)集.所有的有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似的,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有正數(shù)組成的數(shù)集叫做正數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集,如此等等.五、題例精解例把下列各數(shù)填入表示它所在的數(shù)集的圈子里:-18,,3.1416,0,2001,-,0.142857,95%六、隨堂練習(xí)一、判斷1.自然數(shù)是整數(shù).()2.有理數(shù)包括正數(shù)和負(fù)數(shù).()3.有理數(shù)只有正數(shù)和負(fù)數(shù).()4.零是自然數(shù).()5.正整數(shù)包括零和自然數(shù).()6.正整數(shù)是自然數(shù).()7.任何分?jǐn)?shù)都是有理數(shù).()8.沒有最大的有理數(shù).()9.有最小的有理數(shù).()七、課堂小結(jié):(提問式)1.有理數(shù)按正、負(fù)數(shù),應(yīng)怎樣分類?2.有理數(shù)按整數(shù)、分?jǐn)?shù),應(yīng)怎樣分類?3.分類的原則是什么?八、課后作業(yè):1.課本第14頁習(xí)題1.2第1題.九、板書設(shè)計(jì):1.2有理數(shù)第一課時(shí)1、復(fù)習(xí)鞏固,例題講解。2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思1、課堂引入化時(shí)間太多。有理數(shù)的加法對(duì)本節(jié)課的作用不是很大,直接從水位變化的實(shí)例引出可以節(jié)省一些時(shí)間用于合作學(xué)習(xí)的環(huán)節(jié)。2、“鞏固訓(xùn)練”這一環(huán)節(jié)的題目有時(shí)設(shè)計(jì)的較難,對(duì)中下學(xué)生一時(shí)難以接受。重點(diǎn)應(yīng)該是練習(xí)有理數(shù)運(yùn)算的法則,計(jì)算量不易太大。應(yīng)按由易到難的順序進(jìn)行,學(xué)生會(huì)容易接受。3、教學(xué)中感覺教師啟發(fā)引導(dǎo)的較多,給學(xué)生自主探索思考的空間較少。這樣不利于學(xué)生思維的發(fā)展,不利于學(xué)生主體作用的發(fā)揮。1.2.2數(shù)軸第二課時(shí)九月八日三維目標(biāo)一.知識(shí)與技能(1)掌握數(shù)軸三要素,能正確地畫出數(shù)軸.(2)能準(zhǔn)備地將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點(diǎn)所表示的數(shù).二、過程與方法經(jīng)歷從實(shí)際問題中抽象出數(shù)學(xué)問題的過程,初步學(xué)會(huì)數(shù)學(xué)的類比方法和數(shù)形結(jié)合的思想方法.三、情感態(tài)度與價(jià)值觀體會(huì)知識(shí)源于生活,并應(yīng)用于生活.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):理解數(shù)形結(jié)合的數(shù)學(xué)方法,掌握數(shù)軸畫法和用數(shù)軸上的點(diǎn)表示有理數(shù).2.難點(diǎn):正確理解有理數(shù)和數(shù)軸上的點(diǎn)的對(duì)應(yīng)關(guān)系.3.關(guān)鍵:掌握數(shù)形結(jié)合的數(shù)學(xué)方法.教具準(zhǔn)備投影儀.教學(xué)過程四、復(fù)習(xí)提問、新課引入1.有理數(shù)包括哪些數(shù)?有理數(shù)是怎樣分類的?2.回顧小學(xué)數(shù)學(xué)是如何利用數(shù)軸表示正數(shù)和零的?五、新授引入負(fù)數(shù)后,又如何利用數(shù)軸表示有理數(shù)呢?讓我們先看一個(gè)問題.在一條東西走向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.1.畫一條直線表示馬路,從左到右表示從西到東的方向.2.因?yàn)榱鴺?、楊樹都在汽車站的東面,即在汽車站的右邊.槐樹、電線桿在汽車站的西面,即在汽車站的左邊,它們都相對(duì)汽車站而言,所以在直線上任取一個(gè)點(diǎn)O表示汽車站的位置,規(guī)定1個(gè)單位規(guī)定.(線段OA的長代表1m長)(如下圖)3.分別標(biāo)出柳樹、楊樹、槐樹、電線桿的位置.在點(diǎn)O右邊,與O距離3個(gè)單位長度的點(diǎn)B表示柳樹的位置:點(diǎn)O右邊,與O點(diǎn)距離7.5個(gè)單位長度的點(diǎn)C表示楊樹的位置;點(diǎn)O左邊,與點(diǎn)O距離3個(gè)單位長度的點(diǎn)D表示槐樹位置;點(diǎn)O的左邊,與點(diǎn)O距離4.8個(gè)單位長度的點(diǎn)E表示電線桿的位置.問:怎樣用數(shù)簡(jiǎn)明地表示這些樹、電線桿與汽車站的相對(duì)位置關(guān)系?(方向、距離)為了使表達(dá)更清楚、更簡(jiǎn)潔,我們把點(diǎn)O左右兩邊的數(shù)分別用正數(shù)和正數(shù)表示.符號(hào)表示方向,點(diǎn)O的左邊表示負(fù)數(shù),點(diǎn)O的右邊表示正數(shù).這樣就可以簡(jiǎn)明地表示這些樹、電線桿與汽車站的相對(duì)位置關(guān)系了.這里,-4.8中的負(fù)號(hào)“-”表示汽車站(點(diǎn)O)的左邊,4.8表示與點(diǎn)O的距離為4.8個(gè)單位長度.說明:以上分析,教師應(yīng)邊講邊畫,分步進(jìn)行.觀察后回答:(課本第11頁)溫度計(jì)可以看作表示正數(shù)、0和負(fù)數(shù)的直線嗎?它和課本圖1.2-1有什么共同點(diǎn),有什么不同點(diǎn)?答:可以,課本圖1.2-2也是把正數(shù)、o和負(fù)數(shù)用一條直線上的點(diǎn)表示出來,它是向上方向?yàn)檎?的上方表示正數(shù),0的下方表示負(fù)數(shù)),只要把溫度計(jì)水平放下就與課本圖1.2-1相同了.一般地,在數(shù)學(xué)中人們用畫圖的方式把數(shù)“直觀化”,通常用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸,它滿足以下要求:(1)在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn),記為0;(2)通常規(guī)定直線上從原點(diǎn)向右(或上)為正方向,從原點(diǎn)向左(或下)為負(fù)方向;(3)選取適當(dāng)?shù)拈L度為單位長度,直線上從原點(diǎn)向右,每隔一個(gè)單位長度取一個(gè)點(diǎn),依次表示1,2,3,…;從原點(diǎn)向左,用類似方法依次表示-1,-2,-3,….像這樣規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸.原點(diǎn)、正方向和單位長度稱為數(shù)軸的三要素,缺一不可.單位長度的大小可以根據(jù)不同的需要選擇.任何一個(gè)有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,例如3.5,數(shù)軸上從原點(diǎn)向右3.5個(gè)單位長度的點(diǎn)表示3.5,又如要表示-2,從原點(diǎn)向左2個(gè)單位長度的點(diǎn)就表示-2,如下圖.歸納:先由學(xué)生填空,然后教師加以講評(píng).六、鞏固練習(xí)1.請(qǐng)同學(xué)們?cè)诰毩?xí)本上畫一條數(shù)軸.2.下面的各圖是不是數(shù)軸?為什么?3.在數(shù)軸上畫出表示下列各數(shù)的點(diǎn).(1)4,-2,-4,1,0,-2(2)-100,100,-250,-400,0,2.54.指出數(shù)軸上A、B、C、D、E各點(diǎn)分別表示什么數(shù)?5.在數(shù)軸上與表示-1的點(diǎn)的距離為2個(gè)單位長度的點(diǎn)有幾個(gè)?請(qǐng)你在數(shù)軸上把它們畫出來,它們分別表示什么數(shù)?學(xué)生獨(dú)立完成后,老師講解,給出正確的答案.七、課堂小結(jié)數(shù)軸是非常重點(diǎn)的數(shù)學(xué)工具,它的出現(xiàn)對(duì)數(shù)學(xué)的發(fā)展起了重要作用,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,很多數(shù)學(xué)問題都可以以它為基礎(chǔ),借助圖直觀地表示,為研究問題提供了新方法.八、作業(yè)布置1.課本第10頁練習(xí)1、2題,第14頁習(xí)題1.2的第2題.九、板書設(shè)計(jì):1.2.2數(shù)軸第二課時(shí)1、像這樣規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸.原點(diǎn)、正方向和單位長度稱為數(shù)軸的三要素,缺一不可.單位長度的大小可以根據(jù)不同的需要選擇.任何一個(gè)有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,例如3.5,數(shù)軸上從原點(diǎn)向右3.5個(gè)單位長度的點(diǎn)表示3.5,又如要表示-2,從原點(diǎn)向左2個(gè)單位長度的點(diǎn)就表示-2,如下圖.2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思這一課時(shí)學(xué)習(xí)的數(shù)軸概念是中學(xué)數(shù)學(xué)中數(shù)形結(jié)合的起點(diǎn),數(shù)形結(jié)合是幫助學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法。在教學(xué)與學(xué)習(xí)中注重?cái)?shù)形結(jié)合是數(shù)學(xué)教學(xué)與學(xué)習(xí)的重要指導(dǎo)思想,以后學(xué)習(xí)有理數(shù)的有關(guān)性質(zhì)和運(yùn)算都是結(jié)合數(shù)軸進(jìn)行的,由此可見這一課時(shí)學(xué)生學(xué)好數(shù)軸概念的重要性?!皵?shù)軸”這堂課我在教學(xué)的引人部分進(jìn)行了一些修改和細(xì)化,我從“射線→數(shù)射線→數(shù)軸”一步步引入。先在屏幕上出示一個(gè)點(diǎn),再從這個(gè)點(diǎn)引出一條射線,在射線上等距離地標(biāo)上數(shù),使之成為一條數(shù)射線,接著把數(shù)射線向另一方向延伸,就成了一條數(shù)軸。有了這樣動(dòng)態(tài)的過程,學(xué)生對(duì)數(shù)軸的形成有了較為清晰的認(rèn)識(shí)。本節(jié)課,當(dāng)學(xué)生用數(shù)軸上的點(diǎn)表示正負(fù)數(shù)時(shí),學(xué)生不但要知道數(shù)軸上給定的點(diǎn)表示的數(shù),還要能把給定的數(shù)用實(shí)心點(diǎn)表示在數(shù)軸上。在整個(gè)數(shù)軸的教學(xué)中始終注重?cái)?shù)與形的結(jié)合教學(xué),培養(yǎng)學(xué)生的動(dòng)手能力與聯(lián)系能力,明白數(shù)學(xué)在生中的應(yīng)用。1.2.3相反數(shù)第三課時(shí)九月九日三維目標(biāo)一.知識(shí)與技能(1)借助數(shù)軸了解相反數(shù)的概念,知道兩個(gè)互為相反數(shù)的位置關(guān)系.(2)給出一個(gè)數(shù),能求出它的相反數(shù).二、過程與方法借助數(shù)軸,通過觀察特例,總結(jié)出相反數(shù)的概念.從數(shù)和形兩個(gè)側(cè)面理解相反數(shù).三、情感態(tài)度與價(jià)值觀鼓勵(lì)學(xué)生積極進(jìn)行歸納、比較交流等活動(dòng).教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):理解相反數(shù)的意義,會(huì)求一個(gè)數(shù)的相反數(shù).2.難點(diǎn):理解和掌握雙重符合的簡(jiǎn)化.3.關(guān)鍵:通過觀察特例,以及互為相反數(shù)的兩個(gè)數(shù)在數(shù)軸上的位置,理解相反數(shù).教學(xué)過程四、復(fù)習(xí)提問課堂引入在數(shù)軸上,畫出表示6,-6,2,-2,4,-4各數(shù)的點(diǎn).五、新授請(qǐng)同學(xué)們觀察后回答:1.上述中6和-6;2和-2,4和-4每對(duì)數(shù)有什么特點(diǎn)?2.每對(duì)數(shù)在數(shù)軸上所表示的點(diǎn)有什么特點(diǎn)?3.再觀察課本第8頁的圖1.2-1中點(diǎn)D和點(diǎn)B,它們的位置關(guān)系如何?它們各表示的數(shù)有什么特點(diǎn)?概括:(1)每一對(duì)數(shù),只有符號(hào)不同.(2)在數(shù)軸上表示每一對(duì)數(shù)的兩個(gè)點(diǎn)分別在原點(diǎn)的兩邊,并且離開原點(diǎn)的距離相等.(3)點(diǎn)D和點(diǎn)B分別位于原點(diǎn)的兩邊,且與原點(diǎn)的距離相等,它們分別表示-3和3.思考:數(shù)軸上與原點(diǎn)的距離是2的點(diǎn)有幾個(gè)?這些點(diǎn)表示的數(shù)是什么?與原點(diǎn)的距離是5的點(diǎn)呢?歸納:一般地,設(shè)a是一個(gè)正數(shù),數(shù)軸上與原點(diǎn)的距離是a的點(diǎn)有兩個(gè),它們分別在原點(diǎn)左右,表示-a和a,那么稱這兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如下圖:像這樣只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),例如6和-6,2和-2,都是互為相反數(shù),也就是說6的相反數(shù)是-6,-2的相反數(shù)是2.一般地,a和-a互為相反數(shù),特別地,0的相反數(shù)仍是0.問:數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)和原點(diǎn)有什么關(guān)系?答:數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)是關(guān)于原點(diǎn)對(duì)稱,是在原點(diǎn)的兩旁(除0外),并且與原點(diǎn)的距離相等.注意相反數(shù)與倒數(shù)的區(qū)別,若兩個(gè)數(shù)只有符號(hào)不同,那么這兩個(gè)數(shù)叫做互為相反數(shù);若兩個(gè)數(shù)的乘積等于1,則這兩個(gè)數(shù)叫互為倒數(shù).任何有理數(shù)都有相反數(shù),零的相反數(shù)是零,而零沒有倒數(shù).例1:分別寫出下列各數(shù)的相反數(shù).5,-7,-3,+11.2,0.解:5的相反數(shù)是-5;-7的相反數(shù)是7;-3的相反數(shù)是3;+11.2的相反數(shù)是-11.2;0的相反數(shù)是0.強(qiáng)調(diào)書寫格式,防止出現(xiàn)如“5=-5”的錯(cuò)誤.容易看出,在正數(shù)前面添上“-”號(hào),就得到這個(gè)正數(shù)的相反數(shù).在任意一個(gè)數(shù)的前面添上“-”號(hào),新的數(shù)就表示原數(shù)的相反數(shù).例如:-(+5)=-5,-(-7)=7,-(-3)=3,-(+11.2)=-11.2,-0=0.我們知道一個(gè)正數(shù),前面的“+”號(hào)可以寫也可以不寫,所以在一個(gè)數(shù)的前面添上“+”號(hào),表示這個(gè)數(shù)沒有變化,還是它本身.例如:+(-4)=-4,+(+12)=12,+0=0六、課堂練習(xí)1.寫出下列各數(shù)的相反數(shù).+2,-2.5,0,2.化簡(jiǎn)下列各數(shù).-(-30),-(+3),-(-38.2),+(-5),+(+).3.指出下列各對(duì)數(shù),哪些是相等的數(shù)?哪些是互為相反數(shù)?+(-3)與-3,-(+3)與3,-(-7)與-7.4.如果a=-a,那么表示a的點(diǎn)在數(shù)軸上的什么位置?5.你會(huì)化簡(jiǎn)下列各數(shù)嗎?試試看.(本題可根據(jù)學(xué)生實(shí)際情況選用)-[+(-2)],-[-(-6)].提示:因?yàn)槿我鈹?shù)a是-a的相反數(shù),所以表示a的點(diǎn)在數(shù)軸上與表示-a的點(diǎn)關(guān)系原點(diǎn)對(duì)稱,這兩個(gè)點(diǎn)分別在原點(diǎn)左、右兩邊且與原點(diǎn)距離相等.七、課堂小結(jié)本節(jié)課我們學(xué)習(xí)了相反數(shù)的概念、相反數(shù)的求法和雙重符號(hào)的簡(jiǎn)化.理解相反數(shù)的意義,相反數(shù)總是一正一反成對(duì)出現(xiàn)(零除外),從數(shù)軸上看,表示互為相反數(shù)的兩個(gè)點(diǎn),分別在原點(diǎn)的兩邊,且到原點(diǎn)距離相等.要表示一個(gè)數(shù)的相反數(shù),只要在這個(gè)數(shù)前面添“-”號(hào),-a表示a的相反數(shù),當(dāng)a是正數(shù)時(shí),-a表示一個(gè)負(fù)數(shù);當(dāng)a是負(fù)數(shù)時(shí),則-a表示正數(shù).此外我們還應(yīng)該注意相反數(shù)和倒數(shù)的區(qū)別.八、作業(yè)布置1.課本第11頁練習(xí)1、2、3題,第15頁習(xí)題1.2第3題.九、板書設(shè)計(jì):1.2.3相反數(shù)第三課時(shí)九月十二日1、一般地,設(shè)a是一個(gè)正數(shù),數(shù)軸上與原點(diǎn)的距離是a的點(diǎn)有兩個(gè),它們分別在原點(diǎn)左右,表示-a和a,那么稱這兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如下圖:像這樣只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),例如6和-6,2和-2,都是互為相反數(shù),也就是說6的相反數(shù)是-6,-2的相反數(shù)是2.2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思

相反數(shù)這一課是有理數(shù)第三節(jié)的內(nèi)容,本節(jié)課的學(xué)習(xí)目標(biāo)是借助數(shù)軸了解相反數(shù)的概念,相反數(shù)的代數(shù)意義和幾何意義;掌握一對(duì)相反數(shù)的特點(diǎn)并會(huì)寫出已知數(shù)的相反數(shù);會(huì)化簡(jiǎn)一個(gè)數(shù)的多重復(fù)號(hào)。學(xué)習(xí)的重難點(diǎn)是理解相反數(shù)的意義。

本節(jié)課首先復(fù)習(xí)數(shù)軸的有關(guān)知識(shí),在讓學(xué)生在數(shù)軸上標(biāo)出+5,-5,+2,-2,觀察+5,-5到原點(diǎn)的距離,+2,-2到原點(diǎn)的距離。引出相反數(shù)的概念,加深對(duì)概念的理解。歸納相反數(shù)的意義,代數(shù)意義和幾何意義。從學(xué)生的學(xué)習(xí)效果來看,學(xué)生會(huì)求一個(gè)數(shù)的相反數(shù),也會(huì)求數(shù)a的相反數(shù),但是有些學(xué)生在求用字母表示的數(shù)的相反數(shù)時(shí)往往會(huì)犯幾類錯(cuò)誤,第一,求a+b的相反數(shù),學(xué)生會(huì)寫成a-b,或者把a(bǔ)-b的相反數(shù)寫成a+b;第二,求a-b的相反數(shù)時(shí),寫成-a-b,不把a(bǔ)-b用括號(hào)括起來。

學(xué)習(xí)了負(fù)數(shù)之后,學(xué)生存在一個(gè)理解的誤區(qū),容易誤認(rèn)為帶負(fù)號(hào)的數(shù)就是負(fù)數(shù)。比如學(xué)生通常會(huì)認(rèn)為-a就是負(fù)數(shù),事實(shí)上,-a是什么數(shù)取決于a。如果a是正數(shù),那么-a是負(fù)數(shù);如果a是負(fù)數(shù),那么-a是正數(shù)。

還有部分學(xué)生對(duì)相反數(shù)的意義理解不清,一、相反數(shù)必須是成對(duì)出現(xiàn)的,不能單獨(dú)存在,而單獨(dú)的一個(gè)數(shù)不能說成相反數(shù);二、“只有”是指除符號(hào)以外,兩個(gè)數(shù)完全相同,應(yīng)與“只要符號(hào)不同”區(qū)分開,如+3和-3互為相反數(shù),而+3與-2雖然符號(hào)不同,但它們不是相反數(shù);三、對(duì)于相反數(shù)的代數(shù)意義不會(huì)運(yùn)用,比如題目告訴我們說a+b與a-b互為相反數(shù),學(xué)生根據(jù)這一句話不會(huì)列式,這可能是對(duì)相反數(shù)的代數(shù)意義理解不深。

通過這節(jié)課的學(xué)習(xí)和練習(xí),我認(rèn)為知識(shí)的學(xué)習(xí),不僅是要把每個(gè)概念弄清楚,更重要的是這些概念的意義和運(yùn)用。會(huì)正確的解題就是要求學(xué)生能夠把學(xué)到的知識(shí)活學(xué)活用,因此,在今后的教學(xué)中,要加強(qiáng)訓(xùn)練,通過練習(xí)來鞏固學(xué)生學(xué)到的知識(shí)點(diǎn)。1.2.4絕對(duì)值第四課時(shí)九月十三日三維目標(biāo)一、知識(shí)與技能(1)借助數(shù)軸初步理解絕對(duì)值的概念,能求一個(gè)數(shù)的絕對(duì)值.(2)通過應(yīng)用絕對(duì)值解決實(shí)際問題,體會(huì)絕對(duì)值的意義和作用.二、過程與方法通過觀察實(shí)例及絕對(duì)值的幾何意義,探索一個(gè)數(shù)的絕對(duì)值與這個(gè)數(shù)之間的關(guān)系,培養(yǎng)學(xué)生語言描述能力.三、情感態(tài)度與價(jià)值觀培養(yǎng)學(xué)生積極參與探索活動(dòng),體會(huì)數(shù)形結(jié)合的方法.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):正確理解絕對(duì)值的概念,能求一個(gè)數(shù)的絕對(duì)值.2.難點(diǎn):正確理解絕對(duì)值的幾何意義和代數(shù)意義.3.關(guān)鍵:借助數(shù)軸理解絕對(duì)值的幾何意義,根據(jù)絕對(duì)值定義和相反數(shù)的概念,理解絕對(duì)值的代數(shù)意義.四、教學(xué)過程一、復(fù)習(xí)提問,新課引入1.什么叫互為相反數(shù)?2.在數(shù)軸上表示互為相反數(shù)的兩個(gè)點(diǎn)和原點(diǎn)的位置關(guān)系怎樣?五、新授在一些量的計(jì)算中,有時(shí)并不注意其方向,例如,為了計(jì)算汽車行駛所耗的油量,起作用的是汽車行駛的路程而不是行駛的方向.1.觀察課本第11頁圖1.2-5,回答:(1)兩輛汽車行駛的路線相同嗎?(2)它們行駛路程的遠(yuǎn)近相同嗎?這兩輛車行駛的路線不同(方向相反),但行駛的路程的遠(yuǎn)近相同,都是10km.課本圖1.2-5中表示-10的點(diǎn)B和表示10的點(diǎn)A離開原點(diǎn)的距離都是10,我們就把這個(gè)距離10叫做數(shù)-10、10的絕對(duì)值.一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作│a│.這里的數(shù)a可以是正數(shù)、負(fù)數(shù)和0.例如上述的10和-10的絕對(duì)值記作│10│=10,│-10│=10,同樣在數(shù)軸上表示+6和-6的兩個(gè)點(diǎn),離開原點(diǎn)的距離都是6,即6和-6的絕對(duì)值都是6,記作│6│=6,│-6│=6.?dāng)?shù)軸上表示數(shù)0的點(diǎn)與原點(diǎn)的距離是0,所以│0│=0.2.試一試:(1)│+2│=______,││=_____,│+10.6│=________.(2)│0│=_______.(3)│-12│=_______,│-20.8│=_______,│-32│=_______.3.你能從上面解答中發(fā)現(xiàn)什么規(guī)律嗎?學(xué)生若有困難,教師可提示:所得的結(jié)果與絕對(duì)值符號(hào)內(nèi)的數(shù)有什么關(guān)系?從而得出絕對(duì)值的代數(shù)意義:(1)一個(gè)正數(shù)的絕對(duì)值是它本身;(2)零的絕對(duì)值是零;(3)一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù).我們用a表示任意一個(gè)有理數(shù),上述式子可以表示為:①當(dāng)a是正數(shù)時(shí),│a│=_______;②當(dāng)a是負(fù)數(shù)時(shí),│a│=_______;③當(dāng)a=0時(shí),│a│=_______.以上先讓學(xué)生填空,然后讓學(xué)生給a取一些具體數(shù)值檢驗(yàn)所填寫的結(jié)果是否正確.教師問:(1)任何一個(gè)有理數(shù)都有絕對(duì)值嗎?一個(gè)數(shù)的絕對(duì)值有幾個(gè)?(2)有沒有一個(gè)數(shù)的絕對(duì)值等于-2?任何一個(gè)數(shù)的絕對(duì)值一定是怎樣的數(shù)?(3)絕對(duì)值等于2的數(shù)有幾個(gè)?它們是什么?歸納:①任何有理數(shù)都有唯一的絕對(duì)值,任意一個(gè)數(shù)的絕對(duì)值總是正數(shù)或0,不可能是負(fù)數(shù),即對(duì)任意有理數(shù)a,總有│a│≥0.②兩個(gè)互為相反數(shù)的絕對(duì)值相等,即│a│=│-a│.③因?yàn)?的絕對(duì)值是0,而0的相反數(shù)是它本身0,因此可知絕對(duì)值等于它本身的數(shù)是正數(shù)或者零,絕對(duì)值等于它的相反數(shù)的數(shù)是負(fù)數(shù)或零.六、鞏固練習(xí)1.課本第12頁練習(xí)1、2題.第1題強(qiáng)調(diào)書寫格式,防止出現(xiàn)“-8=8”的錯(cuò)誤.第2題(1)錯(cuò),如3與-2的符號(hào)相反,但它們不是互為相反數(shù),應(yīng)改為“只有大小相等符號(hào)相反的數(shù)是互為相反數(shù)”.(2)正確.(3)錯(cuò),因?yàn)檫@個(gè)點(diǎn)也可能越靠左,應(yīng)改為:“一個(gè)數(shù)的絕對(duì)值越大,表示它的點(diǎn)離原點(diǎn)越遠(yuǎn).”(4)正確.七、課堂小結(jié)理解絕對(duì)值的幾何意義和代數(shù)意義.從幾何意義可知,一個(gè)數(shù)的絕對(duì)值是表示該數(shù)的點(diǎn)與原點(diǎn)的距離,因?yàn)榫嚯x總是正數(shù)和零,所以有理數(shù)的絕對(duì)值不可能是負(fù)數(shù),從絕對(duì)值的代數(shù)定義也可進(jìn)一步理解這一點(diǎn).引入絕對(duì)值概念后,有理數(shù)可以理解為由性質(zhì)符號(hào)和絕對(duì)值兩部分組成的,如-5就是由“-”號(hào)和它的絕對(duì)值5兩部分組成.八、作業(yè)布置1.課本第15頁習(xí)題1.2第4、7、10題.九、板書設(shè)計(jì):1.2.4絕對(duì)值第四課時(shí)①任何有理數(shù)都有唯一的絕對(duì)值,任意一個(gè)數(shù)的絕對(duì)值總是正數(shù)或0,不可能是負(fù)數(shù),即對(duì)任意有理數(shù)a,總有│a│≥0.②兩個(gè)互為相反數(shù)的絕對(duì)值相等,即│a│=│-a│.③因?yàn)?的絕對(duì)值是0,而0的相反數(shù)是它本身0,因此可知絕對(duì)值等于它本身的數(shù)是正數(shù)或者零,絕對(duì)值等于它的相反數(shù)的數(shù)是負(fù)數(shù)或零.2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思本節(jié)課我是根據(jù)“新課標(biāo)”的教學(xué)思想設(shè)計(jì)并實(shí)施的。在整節(jié)課的教學(xué)中我覺得做得比較好的地方是:一個(gè)操作、三個(gè)討論。相反數(shù)這節(jié)課是在數(shù)軸一節(jié)課后學(xué)習(xí)的,而數(shù)軸又是初中數(shù)形結(jié)合的一個(gè)重要圖形,所以我重點(diǎn)利用數(shù)軸對(duì)相反數(shù)進(jìn)行講解。我讓學(xué)生在一張白紙上畫數(shù)軸,并將數(shù)軸沿原點(diǎn)對(duì)折,感受互為相反數(shù)的兩數(shù)的對(duì)稱性。通過對(duì)折還比較容易地解決了0的相反數(shù)是0這一難點(diǎn)。(因?yàn)閷?duì)折后原點(diǎn)與本身重合。)

本節(jié)課我設(shè)計(jì)了三個(gè)地方讓學(xué)生分組討論。第一次討論是通過觀察兩個(gè)互為相反數(shù)的兩數(shù),討論它們的異同及在數(shù)軸上的位置關(guān)系;第二次討論是讓學(xué)生討論是否任何有理數(shù)都有相反數(shù);第三次討論是讓學(xué)生討論化簡(jiǎn)雙重符號(hào)的數(shù)的規(guī)律。通過參與其中某些組的討論,我感覺到學(xué)生通過討論既加深了對(duì)數(shù)學(xué)知識(shí)的理解,又增強(qiáng)的合作交流的能力。特別是對(duì)0是否有相反數(shù)的討論,同學(xué)們都很投入,討論得很激烈,有的認(rèn)為有,有的認(rèn)為無,他們都各持己見,最后在我的引導(dǎo)下得出0的相反數(shù)是0的結(jié)論。

本節(jié)課的教學(xué)我也覺得有不足的地方。我設(shè)置的三次討論的時(shí)間都比較短,每次都只有2——3分鐘,學(xué)生討論得不夠深入??赡茉O(shè)置少一兩次討論,而討論的時(shí)間長一點(diǎn)會(huì)更好。這是我以后在教學(xué)中要加強(qiáng)的。

1.2.4絕對(duì)值第五課時(shí)九月十四日三維目標(biāo)一、知識(shí)與技能掌握有理數(shù)的大小比較的兩種方法──利用數(shù)軸和絕對(duì)值.二、過程與方法經(jīng)歷利用絕對(duì)值以及利用數(shù)軸比較有理數(shù)的大小,進(jìn)一步體會(huì)“數(shù)形結(jié)合”的數(shù)學(xué)方法,培養(yǎng)學(xué)生分析、歸納的能力.三、情感態(tài)度與價(jià)值觀會(huì)把所學(xué)知識(shí)運(yùn)用于解決實(shí)際問題,體會(huì)數(shù)學(xué)知識(shí)的應(yīng)用價(jià)值.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):會(huì)利用絕對(duì)值比較有理數(shù)的大?。?.難點(diǎn):兩個(gè)負(fù)數(shù)的大小比較.3.關(guān)鍵:正確理解絕對(duì)值的概念.四、教學(xué)過程一、復(fù)習(xí)提問,引入新課用“>”、“<”號(hào)填空.1.5.7______6.3;2._____;3.0.03_______0;4.│-3│_______│2│;5.│-│_______│-│.五、新授引入負(fù)數(shù)后,如何比較兩個(gè)有理數(shù)的大小呢?讓我們從熟悉的溫度來比較,大家觀察課本第12頁中“未來一周天氣預(yù)報(bào)”.1.課本圖1.2-6中共有14個(gè)溫度,其中最低的是多少?最高的是多少?2.請(qǐng)你將這14個(gè)溫度按從低到高的順序排列.課本圖1.2-6中的14個(gè)溫度按從低到高排列為:-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.按照這個(gè)順序排列的溫度,在溫度計(jì)上所對(duì)應(yīng)的點(diǎn)是從下到上的,按照這個(gè)順序把這些數(shù)表示在數(shù)軸上,表示它們的各點(diǎn)的順序是從左到右的,如課本圖1.2-7,這就是說在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù),因此,我們可以利用數(shù)軸比較有理數(shù)的大小.例如在數(shù)軸上表示-6的點(diǎn)在表示-5的點(diǎn)的左邊,所以-6<-5.同樣-5<-4,-3<-3,-2<0,-1<1,…從數(shù)軸上可知:表示正數(shù)的點(diǎn)都在原點(diǎn)的右邊;表示負(fù)數(shù)的點(diǎn)都在原點(diǎn)左邊.因此有正數(shù)大小0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù).兩個(gè)正數(shù)的大小比較小學(xué)已學(xué)過,不畫數(shù)軸你會(huì)比較兩個(gè)負(fù)數(shù)的大小嗎?探索:我們知道,在數(shù)軸上越靠左邊的點(diǎn)所表示的數(shù)越小,而這個(gè)點(diǎn)與原點(diǎn)的距離越大,即這個(gè)點(diǎn)所表示的數(shù)的絕對(duì)值越大,因此,我們還可以利用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大?。磧蓚€(gè)負(fù)數(shù),絕對(duì)值大的反而?。纾憨?2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.同樣│-1│<│-3│,所以-1>-3.例1:比較下列各對(duì)數(shù)的大?。海?)-(-1)和-(+2);(2)-和-;(3)-(-0.3)和│-│.解:(1)先化簡(jiǎn),-(-1)=1,-(+2)=-2,正數(shù)大于負(fù)數(shù),1>-2.即-(-1)>-(+2).(2)這是兩個(gè)負(fù)數(shù)比較大小,要比較它們的絕對(duì)值,絕對(duì)值大的反而?。?│=,│-│==.因?yàn)?lt;,即│-│<│-│,所以->-.(3)先化簡(jiǎn),-(-0.3)=0.3,│-│==,0.3<0.3,即-(-0.3)<│-│.初學(xué)時(shí),要求學(xué)生按以上步驟進(jìn)行,能化簡(jiǎn)的要先化簡(jiǎn),然后按照有理數(shù)的大小比較法則:異號(hào)兩數(shù)比較大小,要考慮它們的正負(fù),根據(jù)“正數(shù)大于負(fù)數(shù)”,同號(hào)兩數(shù)比較大小,要考慮它們的絕對(duì)值,特別是兩個(gè)負(fù)數(shù)大小比較,先各自求出它們的絕對(duì)值,然后依法則:兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小,比較絕對(duì)值大小后,即可得出結(jié)論.例2:已知a>0,b<0且│b│>│a│,比較a,-a,b,-b的大?。猓悍椒ㄒ?,可通過數(shù)軸來比較大小,先在數(shù)軸上找出a,-a,b,-b的大致位置,再比較.由a>0,b<0可知表示a的點(diǎn)在原點(diǎn)的右邊,表示b的點(diǎn)在原點(diǎn)的左邊;由│b│>│a│,可知表示b的點(diǎn)離開原點(diǎn)的距離更遠(yuǎn),即它應(yīng)在表示a的點(diǎn)的左邊,然后再根據(jù)兩個(gè)互為相反數(shù)在數(shù)軸上所表示的點(diǎn)在原點(diǎn)兩邊,且與原點(diǎn)距離相等即可得到下圖.根據(jù)數(shù)軸上,較左邊的點(diǎn)所表示的數(shù)較小,可得:b<-a<a<-b.六、課堂練習(xí)1.課本第14頁練習(xí).2.補(bǔ)充練習(xí):(1)比較大小,并用“<”連結(jié).①-,-,-;②-(-10),-│-10│,9,-│+18│,0.(2)有理數(shù)a,b在數(shù)軸上的表示如下圖,用“>”或“<”號(hào)填空.①a_____b;②│a│_____│b│;③-a_____-b;④_____.七、全課小結(jié)(提問式)比較有理數(shù)的大小有哪幾種方法?有兩種方法,方法一:利用數(shù)軸,把這些數(shù)用數(shù)軸上的點(diǎn)表示出來,然后根據(jù)“數(shù)軸上較左邊的點(diǎn)所表示的數(shù)比較右邊的點(diǎn)所表示的數(shù)小”來比較.方法二:利用比較法則:“正數(shù)大于零,負(fù)數(shù)小于零,兩個(gè)負(fù)數(shù)比較絕對(duì)值大的反而小”來進(jìn)行.在比較有理數(shù)的大小前,要先化簡(jiǎn),從而知道哪些是正數(shù),哪些是負(fù)數(shù).八、作業(yè)布置1.課本第15頁習(xí)題1.2第5、6、8題.九、板書設(shè)計(jì):1.2.4絕對(duì)值第五課時(shí)1、表示正數(shù)的點(diǎn)都在原點(diǎn)的右邊;表示負(fù)數(shù)的點(diǎn)都在原點(diǎn)左邊.因此有正數(shù)大小0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù).2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思七年級(jí)學(xué)生來說,絕對(duì)值這個(gè)名詞既陌生,又是一個(gè)不易理解的數(shù)學(xué)術(shù)語。本節(jié)課是這一章的重點(diǎn)內(nèi)容,同時(shí)也是一個(gè)難點(diǎn)內(nèi)容。教材從幾何的角度給出絕對(duì)值的概念,也就是從數(shù)軸上表示數(shù)的點(diǎn)的位置出發(fā),得出定義,即一個(gè)數(shù)a的[內(nèi)容來于斐-斐_課-件_園

FFKJ.Net]絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離。這樣一來把數(shù)軸的概念、畫法、利用數(shù)軸比較兩個(gè)數(shù)的大小以及絕對(duì)值等知識(shí)聯(lián)系在一起了。

本節(jié)課內(nèi)容分為三部分,絕對(duì)值的意義、絕對(duì)值的表示方法、比較兩個(gè)數(shù)的絕對(duì)值的大小,難點(diǎn)在于絕對(duì)值概念的理解。數(shù)學(xué)家華羅庚指出:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微。”在數(shù)學(xué)教學(xué)過程中,要千方百計(jì)教給學(xué)生探索方法、獲得知識(shí)的形成過程,掌握更多的數(shù)學(xué)思想、方法,做到形數(shù)兼?zhèn)?、?shù)形結(jié)合。于是,在與學(xué)生共同探討本節(jié)課的知識(shí)的同時(shí),要注重?cái)?shù)學(xué)思想方法的滲透:數(shù)形結(jié)合的思想方法,這樣學(xué)生易于理解。

首先,用10分鐘的時(shí)間自學(xué)教材上的內(nèi)容,同時(shí)完成教材上的隨堂練習(xí),這樣既能培養(yǎng)學(xué)生[此文轉(zhuǎn)于斐斐課件園

FFKJ.Net]的自學(xué)能力,又突出了學(xué)生的主體地位。利用學(xué)生熟悉的情境導(dǎo)入新課,兩輛汽車都從千口出發(fā),分別向東、西方向行駛5km,到達(dá)呂村、韓張兩地,(1)它們行駛的路線相同嗎?

(2)他們行駛的遠(yuǎn)近相同嗎?

(1)它們行駛的路線相同;

(2)它們行駛的遠(yuǎn)近相同,即它們距離原點(diǎn)的距離相同,由此自然而然地引出課題:絕對(duì)值。從實(shí)際問題情境中抽象出數(shù)學(xué)問題,進(jìn)而很自然的得出絕對(duì)值的幾何意義,即一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離。這一情景實(shí)質(zhì)上是將實(shí)際問題數(shù)學(xué)化,直觀性強(qiáng),學(xué)生易于理解,也實(shí)現(xiàn)了《課標(biāo)》要求的數(shù)學(xué)教學(xué)要生活化,數(shù)學(xué)教學(xué)與生活緊密聯(lián)系。

本節(jié)課注重學(xué)生穩(wěn)扎穩(wěn)打的訓(xùn)練學(xué)生的審題、解題能力每學(xué)一個(gè)知識(shí)點(diǎn),緊跟相應(yīng)的數(shù)學(xué)練習(xí),從而達(dá)到良好的教學(xué)效果。1.3.1有理數(shù)的加法(1)第一課時(shí)九月十五日三維目標(biāo)一、知識(shí)與技能理解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的加法運(yùn)算.二、過程與方法引導(dǎo)學(xué)生觀察符號(hào)及絕對(duì)值與兩個(gè)加數(shù)的符號(hào)及其他絕對(duì)值的關(guān)系,培養(yǎng)學(xué)生的分類、歸納、概括能力.三、情感態(tài)度與價(jià)值觀培養(yǎng)學(xué)生主動(dòng)探索的良好學(xué)習(xí)習(xí)慣.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):掌握有理數(shù)加法法則,會(huì)進(jìn)行有理數(shù)的加法運(yùn)算.2.難點(diǎn):異號(hào)兩數(shù)相加的法則.3.關(guān)鍵:培養(yǎng)學(xué)生主動(dòng)探索的良好學(xué)習(xí)習(xí)慣.四、教學(xué)過程一、復(fù)習(xí)提問,引入新課1.有理數(shù)的絕對(duì)值是怎樣定義的?如何計(jì)算一個(gè)數(shù)的絕對(duì)值?2.比較下列每對(duì)數(shù)的大?。?)-3和-2;(2)│-5│和│5│;(3)-2與│-1│;(4)-(-7)和-│-7│.五、新授在小學(xué)里,我們已學(xué)習(xí)了加、減、乘、除四則運(yùn)算,當(dāng)時(shí)學(xué)習(xí)的運(yùn)算是在正有理數(shù)和零的范圍內(nèi).然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍,例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù).本章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球,那么哪個(gè)隊(duì)的凈勝球多呢?要解決這個(gè)問題,先要分別求出它們的凈勝球數(shù).紅隊(duì)的凈勝球數(shù)為:4+(-2);藍(lán)隊(duì)的凈勝球數(shù)為:1+(-1).這里用到正數(shù)與負(fù)數(shù)的加法.怎樣計(jì)算4+(-2)呢?下面借助數(shù)軸來討論有理數(shù)的加法.看下面的問題:一個(gè)物體作左右方向的運(yùn)動(dòng),我們規(guī)定向左為負(fù)、向右為正.(1)如果物體先向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?我們知道,求兩次運(yùn)動(dòng)的總結(jié)果,可以用加法來解答.這里兩次都是向右運(yùn)動(dòng),顯然兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)了8m,寫成算式就是:5+3=8①這一運(yùn)算在數(shù)軸上可表示,其中假設(shè)原點(diǎn)為運(yùn)動(dòng)的起點(diǎn).(如下圖)(2)如果物體先向左運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?顯然,兩次運(yùn)動(dòng)后物體從起點(diǎn)向左運(yùn)動(dòng)了8m,寫成算式就是:(-5)+(-3)=-8②這個(gè)運(yùn)算在數(shù)軸上可表示為(如下圖):(3)如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后物體與起點(diǎn)的位置關(guān)系如何?在數(shù)軸上我們可知物體兩次運(yùn)動(dòng)后位于原點(diǎn)的右邊,即從起點(diǎn)向右運(yùn)動(dòng)了2m.(如下圖)寫成算式就是:5+(-3)=2③探究:還有哪些可能情形?請(qǐng)同學(xué)們利用數(shù)軸,求以下情況時(shí)物體兩次運(yùn)動(dòng)的結(jié)果:(4)先向右運(yùn)動(dòng)3m,再向左運(yùn)動(dòng)5m,物體從起點(diǎn)向______運(yùn)動(dòng)了______m.要求學(xué)生畫出數(shù)軸,仿照(3)畫出示意圖.寫出算式是:3+(-5)=-2④(5)先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)5m,物體從起點(diǎn)向_____運(yùn)動(dòng)了_____m.先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)5m,物體回到原來位置,即物體從起點(diǎn)向左(或向右)運(yùn)動(dòng)了0m,因?yàn)?0=-0,所以寫成算式是:5+(-5)=0⑤(6)先向左運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)5m,物體從起點(diǎn)向________運(yùn)動(dòng)了_______m.同樣,先向左邊運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)5m,可寫成算式是:(-5)+5=0⑥如果物體第1秒向右(或左)運(yùn)動(dòng)5m,第2秒原地不動(dòng),兩秒后物體從起點(diǎn)向右(或左)運(yùn)動(dòng)了多少呢?請(qǐng)你用算式表示它.可寫成算式是:5+0=5或(-5)+0=-5⑦從以上寫出的①~⑦個(gè)式子中,你能總結(jié)出有理數(shù)加法的運(yùn)算法則嗎?引導(dǎo)學(xué)生觀察和的符號(hào)和絕對(duì)值,思考如何確定和的符號(hào)?如何計(jì)算和的絕對(duì)值?算式是小學(xué)已學(xué)過的兩個(gè)正數(shù)相加.觀察算式②,兩個(gè)加數(shù)的符號(hào)相同,都是“-”號(hào),和的符號(hào)也是“-”號(hào)與加數(shù)符號(hào)相同;和的絕對(duì)值8等于兩個(gè)加數(shù)絕對(duì)值的和,即│-5│+│-3│=│-8│.由①②可歸結(jié)為:同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加.例如(-4)+(-5)=-(4+5)=-9.觀察算式③、④是兩個(gè)互為相反數(shù)相加,和為0.由算式③~⑥可歸結(jié)為:絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)相加得0.由算式⑦知,一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).綜合上述,我們發(fā)現(xiàn)有理數(shù)的加法法則,讓學(xué)生朗讀課本第18頁中“有理數(shù)的加法法則”.一個(gè)有理數(shù)由符號(hào)與絕對(duì)值兩部分組成,進(jìn)行加法運(yùn)算時(shí),必先確定和的符號(hào),再確定和的絕對(duì)值.

例1:計(jì)算.(1)(-3)+(-5);(2)(-4.7)+2.9;(3)+(-0.125).分析:本題是有理數(shù)加法,所以應(yīng)遵循加法法則,按判斷類型,確定符號(hào)、計(jì)算絕對(duì)值的步驟進(jìn)行計(jì)算.(1)是同號(hào)兩數(shù)相加,按法則1,取原加數(shù)的符號(hào)“-”,并把絕對(duì)值相加.(2)是絕對(duì)值不相等的異號(hào)兩數(shù)相加.(3)是絕對(duì)值相等的兩數(shù)相加,根據(jù)法則2進(jìn)行計(jì)算.解:(1)(-3)+(-5)=-(3+5)=-8;(2)(-4.7)+2.9=-(4.7-2.9)=-1.8;(3)+(-0.125)=+(-)=0.例2:足球循環(huán)賽中,紅隊(duì)勝黃隊(duì)4:1,黃隊(duì)勝藍(lán)隊(duì)1:0,藍(lán)隊(duì)勝紅隊(duì)1:0,計(jì)算各隊(duì)的凈勝球數(shù).分析:凈勝球數(shù)是進(jìn)球數(shù)與失球數(shù)的和,我們可以分別用正數(shù)、負(fù)數(shù)表示進(jìn)球數(shù)和失球數(shù).紅隊(duì)勝黃隊(duì)4:1表示紅隊(duì)進(jìn)4球,失1球,黃隊(duì)進(jìn)1球失4球.解:每個(gè)隊(duì)的進(jìn)球總數(shù)記為正數(shù),失球總數(shù)記為負(fù)數(shù).三場(chǎng)比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為:(+4)+(-2)=+(4-2)=2;黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為:(+2)+(-4)=-(4-2)=-2;藍(lán)隊(duì)共進(jìn)1球,失1球,凈勝球數(shù)為:(+1)+(-1)=0.以上講解有理數(shù)加法時(shí),嚴(yán)格按照:先判斷類型,然后確定和的符號(hào),最后計(jì)算和的絕對(duì)值,這三步驟進(jìn)行.六、鞏固練習(xí)課本第18頁練習(xí)1、2題.七、課堂小結(jié)有理數(shù)的加法法則指出進(jìn)行有理數(shù)加法運(yùn)算,首先應(yīng)該先判斷類型,然后確定和的符號(hào),最后計(jì)算和的絕對(duì)值.類型為異號(hào)兩數(shù)相加,和的符號(hào)依法則取絕對(duì)值較大的加數(shù)的符號(hào),并把絕對(duì)值相減,因?yàn)檎?fù)互相抵消了一部分.有理數(shù)加法還打破了算術(shù)數(shù)加法中和一定大于加數(shù)的常規(guī).八、作業(yè)布置1.課本第24頁習(xí)題1.3第1題.九、板書設(shè)計(jì):1.3.1有理數(shù)的加法(1)第一課時(shí)1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)相加得0.2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思在本節(jié)課的教學(xué)過程中,將先復(fù)習(xí)舊知引入課題,這樣能使學(xué)生積極主動(dòng)地學(xué)習(xí)。在探究有理數(shù)加法的過程中,先讓學(xué)生獨(dú)立觀察,然后通過小組合作學(xué)習(xí)交流并討論,從而發(fā)現(xiàn)有理數(shù)加法的性質(zhì),注重學(xué)生探究能力的培養(yǎng),讓學(xué)生支親身體驗(yàn)的產(chǎn)生過程,充分發(fā)揮學(xué)生的主觀能動(dòng)性。最后通過例題來鞏固有理數(shù)的加法法則,讓學(xué)生及時(shí)地掌握所學(xué)的新知,對(duì)于學(xué)生起到有效地鞏固作用。

有理數(shù)加法是小學(xué)學(xué)過的加法去處的拓展,學(xué)生已經(jīng)具有了正數(shù)、負(fù)數(shù)、數(shù)軸和絕對(duì)值等知識(shí)。加法法則實(shí)際上給出了確定兩個(gè)有理數(shù)的和的“符號(hào)”與“絕對(duì)值”的規(guī)則,它是通過分析兩個(gè)有理數(shù)哩可能出現(xiàn)的各種不同情況,再歸納出同號(hào)相加、民號(hào)相加、一個(gè)有理數(shù)與0相加三種情況而得到的。由于學(xué)生的思維發(fā)此文轉(zhuǎn)自斐.斐課件.園

FFKJ.Net展水平和知識(shí)準(zhǔn)備的限制,在分情況討論、應(yīng)分成哪幾種情況、如何歸納不同情況等方面都需要教師的引導(dǎo),甚至是直接講解。同號(hào)兩數(shù)的加法法則比較易于理解,而異號(hào)兩數(shù)相加時(shí)情況比較復(fù)雜,學(xué)習(xí)難度較大,需要教師加強(qiáng)引導(dǎo)。另外,根據(jù)法則做加法,需要注意“按部就班”地計(jì)算,這是一個(gè)培養(yǎng)良好運(yùn)算習(xí)慣的過程。1.3.1有理數(shù)的加法(2)第二課時(shí)九月十六日三維目標(biāo)一、知識(shí)與技能(1)能運(yùn)用加法運(yùn)算律簡(jiǎn)化加法運(yùn)算.(2)理解加法運(yùn)算律在加法運(yùn)算中的作用,培養(yǎng)學(xué)生的觀察能力和思維能力.二、過程與方法經(jīng)歷探索有理數(shù)的加法運(yùn)算律的過程,培養(yǎng)學(xué)生的觀察能力和思維能力.三、情感態(tài)度與價(jià)值觀體會(huì)有理數(shù)加法運(yùn)算律的應(yīng)用價(jià)值.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):有理數(shù)加法運(yùn)算律.2.難點(diǎn):靈活運(yùn)用加法運(yùn)算律.3.關(guān)鍵:正確理解加法運(yùn)算律在加法運(yùn)算中的作用.教具準(zhǔn)備投影儀.四、教學(xué)過程一、復(fù)習(xí)提問,引入新課1.?dāng)⑹鲇欣頂?shù)的加法法則.2.在小學(xué)里,數(shù)的加法有哪些運(yùn)算律?五、新授在小學(xué)里,數(shù)的加法滿足交換律、結(jié)合律.如:5+3.5=3.5+5,(5+3.5)+2.5=5+(3.5+2.5).引進(jìn)負(fù)數(shù)后,這些運(yùn)算律還適用嗎?探索:例1.計(jì)算:30+(-20),(-20)+30.兩次所得的和相同嗎?換幾個(gè)加數(shù)試一試,讓學(xué)生自己得出:有理數(shù)的加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置和不變,即加法交換律:a+b=b+a.例2.計(jì)算:[8+(-5)]+(-4),8+[(-5)+(-4)].兩次所得的和相同嗎?換幾個(gè)加數(shù)再試一試.從而得到:有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變,即加法結(jié)合律:(a+b)+c=a+(b+c).上述a、b、c表示任意有理數(shù),可以是正數(shù),也可以是負(fù)數(shù).這樣,多個(gè)有理數(shù)相加可以任意交換加數(shù)位置,也可以先把其中的幾個(gè)數(shù)相加,使計(jì)算簡(jiǎn)化.例3.計(jì)算:16+(-25)+24+(-35).分析:先觀察題目中數(shù)據(jù)特點(diǎn),根據(jù)運(yùn)算律,選擇合理途徑.本題采用正、負(fù)數(shù)分開相加的方法.解:原式=(16+24)+[(-25)+(-35)]=40+(-60)=-20例4.每袋小麥的標(biāo)準(zhǔn)重量為90千克,10袋小麥稱重記錄如課本圖1.3-3所示(課本第19頁),與標(biāo)準(zhǔn)重量比較,10袋小麥總計(jì)超過多少千克或不足多少千克?10袋小麥的總重量是多少?分析:怎樣求這10袋小麥的總重量呢?這是有理數(shù)加法在實(shí)際中的應(yīng)用,本題有兩種解法,教學(xué)時(shí)可先讓學(xué)生相互交流,提出自己的想法,對(duì)不同的解法進(jìn)行比較.解法1:先計(jì)算10袋小麥的總重量.91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4,再計(jì)算標(biāo)準(zhǔn)重量:90×10=900.所以這10袋小麥總計(jì)超過905.4-900=5.4(千克)解法2:先計(jì)算總誤差,然后再求10袋小麥的總重量.將每袋小麥超過標(biāo)準(zhǔn)重量的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),10袋小麥的對(duì)應(yīng)的數(shù)為+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.???+1+1+1.5+(-1)+1.2+1.3+(1.3)+(-1.2)+1.8+1.1=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=5.490×10+5.4=905.4所以10袋小麥總計(jì)超過標(biāo)準(zhǔn)5.4千克,總重量為905.4千克.五、鞏固練習(xí)1.課本第20頁,練習(xí)1、2.六、課堂小結(jié)本節(jié)課我們探索了有理數(shù)加法的運(yùn)算律,靈活運(yùn)用加法的運(yùn)算律使運(yùn)算簡(jiǎn)便.一般情況下,將互為相反數(shù)的數(shù)結(jié)合相加;同分母的分?jǐn)?shù)能湊整的數(shù)結(jié)合;正數(shù)、負(fù)數(shù)分別相加,以使計(jì)算簡(jiǎn)便.七、作業(yè)布置1.課本第25頁習(xí)題1.3第2題,第26頁第9、10、12題.九、板書設(shè)計(jì):1.3.1有理數(shù)的加法(2)第二課時(shí)1、有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。加法結(jié)合律:(a+b)+c=a+(b+c).上述a、b、c表示任意有理數(shù),可以是正數(shù),也可以是負(fù)數(shù).2、隨堂練習(xí)。3、小結(jié)。4、課后作業(yè)。十、課后反思本節(jié)課的重點(diǎn)是有理數(shù)加法的運(yùn)算律,難點(diǎn)是:靈活運(yùn)用加法運(yùn)算律進(jìn)行簡(jiǎn)化運(yùn)算。課堂中學(xué)生由剛開始的引入學(xué)生學(xué)習(xí)積極性較高,達(dá)到了本節(jié)課的第一個(gè)高潮,為了突破重難點(diǎn)設(shè)置了兩組習(xí)題練習(xí)。學(xué)生認(rèn)真,完成正確率較高。同時(shí)展示了學(xué)生的解題技巧,并設(shè)置了大家一起來找茬這一活動(dòng),把課堂推向了第二次高潮??傮w來說課堂效果很好。學(xué)生都能掌握解題技巧。1.3.2有理數(shù)的減法(1)第三課時(shí)九月十九日三維目標(biāo)一、知識(shí)與技能(1)理解并掌握有理數(shù)的減法法則,能進(jìn)行有理數(shù)的減法運(yùn)算.(2)通過把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,讓學(xué)生了解轉(zhuǎn)化思想.二、過程與方法經(jīng)歷探索有理數(shù)的加法運(yùn)算律的過程,培養(yǎng)學(xué)生的觀察能力和思維能力.三、情感態(tài)度與價(jià)值觀體會(huì)有理數(shù)加法運(yùn)算律的應(yīng)用價(jià)值.教學(xué)重、難點(diǎn)與關(guān)鍵1.重點(diǎn):掌握有理數(shù)減法法則,能進(jìn)行有理數(shù)的減法運(yùn)算.2.難點(diǎn):探索有理數(shù)減法法則,能正確完成減法到加法的轉(zhuǎn)化.3.關(guān)鍵:正確完成減法到加法的轉(zhuǎn)化.四、教學(xué)過程一、復(fù)習(xí)提問,新課引入1.計(jì)算.(1)(-5.2)+(-4.8);(2)(-4)+5;(3)(-13)+13;(4)(+4)+(-7.5).2.填空.(1)_______+3=10;(2)30+_______=27;(3)______+(-3)=10;(4)(-13)+____=6.五、新授實(shí)際問題中有時(shí)還要涉及有理數(shù)的減法,例如,某地一天的氣溫是-3℃~4℃,這天的溫差(最高氣溫減最低氣溫,單位:℃)就是4-(-3),這里用到正數(shù)與負(fù)數(shù)的減法,你會(huì)計(jì)算它嗎?(鼓勵(lì)學(xué)生探索)可以先從溫度計(jì)看出4℃比-3℃高7℃.另外,我們知道減法和加法是互為逆運(yùn)算.計(jì)算4-(-3),就是要求出一個(gè)數(shù)x,使x與-3的和等于4,因?yàn)?+(-3)=4,所以4-(-3)=7①另外4+(+3)=7,②比較①、②兩式,你發(fā)現(xiàn)了什么?發(fā)現(xiàn):4-(-3)=4+(+3).這就是說減法可以轉(zhuǎn)化為加法,如何轉(zhuǎn)化呢?減-3相當(dāng)于加3,即加上“-3”的相反數(shù).換幾個(gè)數(shù)再試一試,把4換成0,-1,-5,用上面的方法考慮.0-(-3),(-1)-(-3),(-5)-(-3).因?yàn)椋?3)+(-3)=0,所以0-(-3)=+3,又0+(+3)=+3,所以0-(-3)=0+(+3),同樣,可得(-1)-(-3)=(-1)+(+3),(-5)-(-3)=(-5)+(+3)這些數(shù)減-3的結(jié)果與它們加+3的結(jié)果仍然相同.計(jì)算:(1)9-8,9+(-8);(2)15-7,15+(-7),從中又發(fā)現(xiàn)了什么?通過計(jì)算發(fā)現(xiàn):9-8=9+(-8),15-7=15+(-7).歸納:通過上述討論,得出:有理數(shù)的減法可以轉(zhuǎn)化為加法來進(jìn)行.“相反數(shù)”是轉(zhuǎn)化的橋梁.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù).用式子表示為:a-b=a+(-b).例5:計(jì)算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4)(-3)-5.分析:以上是有理數(shù)的減法,按減法法則,把減法轉(zhuǎn)化為加法.(4)(-3)-5=(-3)+(-5)=-8強(qiáng)調(diào):減號(hào)變加號(hào)、減數(shù)變相反數(shù),必須同時(shí)改變,(4)題中減數(shù)的符號(hào)為“+”號(hào),省略沒有定.六、課堂練習(xí)1.課本第23頁練習(xí)1、2題,第26頁第7、8題.2.差數(shù)一定比被減數(shù)小嗎?提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7.七、課堂小結(jié)引進(jìn)負(fù)數(shù)后,任意兩個(gè)有理數(shù)都可以求出它們的差,結(jié)果可能為正數(shù)(大數(shù)減去小數(shù)),也可能為負(fù)數(shù)(小數(shù)減去大數(shù)),還可能為0(相等的兩數(shù)相減),學(xué)習(xí)有理數(shù)減法,關(guān)鍵在于處理好兩個(gè)“變”字;(1)改變運(yùn)算符號(hào)──即把減法轉(zhuǎn)化為加法.(2)改變減數(shù)的符號(hào)──即減數(shù)變?yōu)樗南喾磾?shù),這兩個(gè)“變”要同時(shí)進(jìn)行,而被減數(shù)不變.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論