天津市十二重點中學2024屆高三第一次調(diào)研測試數(shù)學試卷含解析_第1頁
天津市十二重點中學2024屆高三第一次調(diào)研測試數(shù)學試卷含解析_第2頁
天津市十二重點中學2024屆高三第一次調(diào)研測試數(shù)學試卷含解析_第3頁
天津市十二重點中學2024屆高三第一次調(diào)研測試數(shù)學試卷含解析_第4頁
天津市十二重點中學2024屆高三第一次調(diào)研測試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天津市十二重點中學2024屆高三第一次調(diào)研測試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.2.復(fù)數(shù)的模為().A. B.1 C.2 D.3.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.4.函數(shù)在的圖象大致為A. B.C. D.5.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個6.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.7.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙8.已知點、.若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為()A. B. C. D.9.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.10.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q11.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁12.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.14.已知實數(shù),滿足,則的最大值為______.15.已知向量,,,則_________.16.已知各項均為正數(shù)的等比數(shù)列的前項積為,,(且),則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.18.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.19.(12分)設(shè)為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.20.(12分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設(shè)為直線上一點,且直線、的斜率的積為.證明:點在軸上.21.(12分)已知的內(nèi)角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.22.(10分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側(cè)),求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復(fù)合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.2、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.3、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關(guān)的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.4、A【解析】

因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.5、B【解析】

圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.6、B【解析】

設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.7、A【解析】

利用逐一驗證的方法進行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點睛】本題將數(shù)學知識與時政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識、邏輯推理能力的考查.8、C【解析】

設(shè)出點的坐標,以為底結(jié)合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點的坐標為,直線的方程為,即,設(shè)點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應(yīng)用,考查運算求解能力,屬于中等題.9、B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.10、C【解析】

解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C11、C【解析】

分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設(shè)乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設(shè)丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設(shè)丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設(shè)成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.12、D【解析】

由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.14、【解析】

畫出不等式組表示的平面區(qū)域,將目標函數(shù)理解為點與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因為可以理解為點與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當且僅當目標函數(shù)過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數(shù)為斜率型的規(guī)劃問題,屬基礎(chǔ)題.15、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標運算,向量垂直的性質(zhì),向量的模的計算.16、【解析】

利用等比數(shù)列的性質(zhì)求得,進而求得,再利用對數(shù)運算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)x2=4aya>0,x-y+1=0【解析】

(I)利用所給的極坐標方程和參數(shù)方程,直接整理化簡得到直角坐標方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標方程,結(jié)合韋達定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點睛】本題考查了極坐標方程、參數(shù)方程與直角坐標和普通方程的互化,以及參數(shù)方程的綜合知識,結(jié)合等比數(shù)列,熟練運用知識,屬于較易題.18、(1)(2)【解析】

(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.19、(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質(zhì),當軸時,最小;(2)設(shè)點,,分別代入拋物線方程和得到三個方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標準方程,,根據(jù)拋物線的性質(zhì),當軸時,最小,最小值為,即為4.(2)由題意,設(shè)點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【點睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復(fù)雜式子的變形能力不足,導致錯解.20、(1);(2)見解析.【解析】

(1)由已知條件得出、的值,進而可得出的值,由此可求得橢圓的方程;(2)設(shè)點,可得,且,,求出直線的斜率,進而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點的坐標,即可證得結(jié)論.【詳解】(1)由題設(shè),得,所以,即.故橢圓的方程為;(2)設(shè),則,,.所以直線的斜率為,因為直線、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點的縱坐標為.因為點在橢圓上,所以,則,所以點在軸上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線的證明,考查計算能力與推理能力,屬于中等題.21、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.22、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)結(jié)合已知可得,求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論