期浙江省金華市2024年中考二模數(shù)學(xué)試題含解析_第1頁
期浙江省金華市2024年中考二模數(shù)學(xué)試題含解析_第2頁
期浙江省金華市2024年中考二模數(shù)學(xué)試題含解析_第3頁
期浙江省金華市2024年中考二模數(shù)學(xué)試題含解析_第4頁
期浙江省金華市2024年中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

期浙江省金華市2024年中考二模數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.cos60°的值等于()A.1 B. C. D.2.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數(shù)為()A. B. C. D.3.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.4.四組數(shù)中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數(shù)的是()A.①② B.①③ C.①④ D.①③④5.下列運算結(jié)果正確的是()A.a(chǎn)3+a4=a7 B.a(chǎn)4÷a3=a C.a(chǎn)3?a2=2a3 D.(a3)3=a66.下列因式分解正確的是A. B.C. D.7.在數(shù)軸上表示不等式組的解集,正確的是()A. B.C. D.8.拋物線的頂點坐標(biāo)是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)9.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標(biāo)志中,是軸對稱圖形的是()A. B. C. D.10.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形11.上體育課時,小明5次投擲實心球的成績?nèi)缦卤硭荆瑒t這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.012.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為_____.14.如圖所示,把一張長方形紙片沿折疊后,點分別落在點的位置.若,則等于________.15.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應(yīng)的度數(shù)為65°,那么在大量角器上對應(yīng)的度數(shù)為_____度(只需寫出0°~90°的角度).16.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數(shù)的圖象經(jīng)過點,則的值為_________________.17.方程的解是__________.18.如圖,點是反比例函數(shù)圖像上的兩點(點在點左側(cè)),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,頂點為C的拋物線y=ax2+bx(a>0)經(jīng)過點A和x軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達式;(2)過點C作CE⊥OB,垂足為E,點P為y軸上的動點,若以O(shè)、C、P為頂點的三角形與△AOE相似,求點P的坐標(biāo);(3)若將(2)的線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.20.(6分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結(jié)BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結(jié)BC并延長交半徑OM于點A,設(shè)OA=x,∠COM的正切值為y.(1)如圖2,當(dāng)AB⊥OM時,求證:AM=AC;(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)當(dāng)△OAC為等腰三角形時,求x的值.21.(6分)某汽車制造公司計劃生產(chǎn)A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產(chǎn)方案?(2)該公司按照哪種方案生產(chǎn)汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產(chǎn)甲乙兩種鋼板(兩種都生產(chǎn)),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產(chǎn)方案?(直接寫出答案)22.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點,其中點B的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,4);點D的坐標(biāo)為(0,2),點P為二次函數(shù)圖象上的動點.(1)求二次函數(shù)的表達式;(2)當(dāng)點P位于第二象限內(nèi)二次函數(shù)的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設(shè)平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標(biāo);若不存在,請說明理由.23.(8分)如圖,一次函數(shù)y=kx+b的圖象與坐標(biāo)軸分別交于A、B兩點,與反比例函數(shù)y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=1,OD=6,△AOB的面積為1.求一次函數(shù)與反比例函數(shù)的表達式;當(dāng)x>0時,比較kx+b與的大小.24.(10分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.25.(10分)解不等式組,請結(jié)合題意填空,完成本題的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式的解集為.26.(12分)已知關(guān)于x的一元二次方程3x2﹣6x+1﹣k=0有實數(shù)根,k為負整數(shù).求k的值;如果這個方程有兩個整數(shù)根,求出它的根.27.(12分)如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接AE、DE.求證:DE是⊙O的切線;設(shè)△CDE的面積為S1,四邊形ABED的面積為S1.若S1=5S1,求tan∠BAC的值;在(1)的條件下,若AE=3,求⊙O的半徑長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)特殊角的三角函數(shù)值直接得出結(jié)果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關(guān)鍵.2、B【解析】根據(jù)折疊前后對應(yīng)角相等可知.

解:設(shè)∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.3、D【解析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.4、C【解析】

根據(jù)倒數(shù)的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數(shù)的是:①④,故選C.【點睛】此題主要考查了倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).5、B【解析】

分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.6、D【解析】

直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.7、C【解析】

解不等式組,再將解集在數(shù)軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關(guān)鍵.8、A【解析】

已知解析式為頂點式,可直接根據(jù)頂點式的坐標(biāo)特點,求頂點坐標(biāo).【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(2,3).故選A.【點睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標(biāo)是(h,k),對稱軸是x=h.9、D【解析】

根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.11、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).12、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】

過A作關(guān)于直線MN的對稱點A′,連接A′B,由軸對稱的性質(zhì)可知A′B即為PA+PB的最小值,【詳解】解:連接OB,OA′,AA′,∵AA′關(guān)于直線MN對稱,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,過O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,

∴A′B=2A′Q=即PA+PB的最小值.【點睛】本題考查軸對稱求最小值問題及解直角三角形,根據(jù)軸對稱的性質(zhì)準(zhǔn)確作圖是本題的解題關(guān)鍵.14、50°【解析】

先根據(jù)平行線的性質(zhì)得出∠DEF的度數(shù),再根據(jù)翻折變換的性質(zhì)得出∠D′EF的度數(shù),根據(jù)平角的定義即可得出結(jié)論.【詳解】∵AD∥BC,∠EFB=65°,

∴∠DEF=65°,

又∵∠DEF=∠D′EF,

∴∠D′EF=65°,

∴∠AED′=50°.【點睛】本題考查翻折變換(折疊問題)和平行線的性質(zhì),解題的關(guān)鍵是掌握翻折變換(折疊問題)和平行線的性質(zhì).15、1.【解析】

設(shè)大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應(yīng)的度數(shù)為1°.故答案為1.16、1【解析】

先求出直線y=x+2與坐標(biāo)軸的交點坐標(biāo),再由三角形的中位線定理求出CD,得到C點坐標(biāo).【詳解】解:令x=0,得y=x+2=0+2=2,

∴B(0,2),

∴OB=2,

令y=0,得0=x+2,解得,x=-6,

∴A(-6,0),

∴OA=OD=6,

∵OB∥CD,

∴CD=2OB=4,

∴C(6,4),

把c(6,4)代入y=(k≠0)中,得k=1,

故答案為:1.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)方法,三角形的中位線定理,待定系數(shù)法.本題的關(guān)鍵是求出C點坐標(biāo).17、x=1【解析】

將方程兩邊平方后求解,注意檢驗.【詳解】將方程兩邊平方得x-3=4,移項得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本題答案為:x=1.【點睛】在解無理方程是最常用的方法是兩邊平方法及換元法,解得答案時一定要注意代入原方程檢驗.18、【解析】

過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點B作BF⊥OC于點F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點睛】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運用相似三角形的判定定理和性質(zhì)定理.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=x2﹣x;(2)點P坐標(biāo)為(0,)或(0,);(3).【解析】

(1)根據(jù)AO=OB=2,∠AOB=120°,求出A點坐標(biāo),以及B點坐標(biāo),進而利用待定系數(shù)法求二次函數(shù)解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當(dāng)OP=OC或OP′=2OC時,△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是線段AQ的長.【詳解】(1)過點A作AH⊥x軸于點H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A點坐標(biāo)為:(-1,),B點坐標(biāo)為:(2,0),將兩點代入y=ax2+bx得:,解得:,∴拋物線的表達式為:y=x2-x;(2)如圖,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴當(dāng)OP=OC或OP′=2OC時,△POC與△AOE相似,∴OP=,OP′=,∴點P坐標(biāo)為(0,)或(0,).(3)如圖,取Q(,0).連接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是線段AQ的長,最小值為.【點睛】本題考查二次函數(shù)綜合題、解直角三角形、相似三角形的判定和性質(zhì)、兩點之間線段最短等知識,解題的關(guān)鍵是學(xué)會由分類討論的思想思考問題,學(xué)會構(gòu)造相似三角形解決最短問題,屬于中考壓軸題.20、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結(jié)論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結(jié)論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結(jié)論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當(dāng)OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當(dāng)AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當(dāng)CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當(dāng)△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的有關(guān)性質(zhì),勾股定理,等腰三角形的性質(zhì),建立y關(guān)于x的函數(shù)關(guān)系式是解答本題的關(guān)鍵.21、(1)共有三種方案,分別為①A型號16輛時,B型號24輛;②A型號17輛時,B型號23輛;③A型號18輛時,B型號22輛;(2)當(dāng)時,萬元;(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【解析】

(1)設(shè)A型號的轎車為x輛,可根據(jù)題意列出不等式組,根據(jù)問題的實際意義推出整數(shù)值;(2)根據(jù)“利潤=售價-成本”列出一次函數(shù)的解析式解答;(3)根據(jù)(2)中方案設(shè)計計算.【詳解】(1)設(shè)生產(chǎn)A型號x輛,則B型號(40-x)輛153634x+42(40-x)1552解得,x可以取值16,17,18共有三種方案,分別為A型號16輛時,B型號24輛A型號17輛時,B型號23輛A型號18輛時,B型號22輛(2)設(shè)總利潤W萬元則W==w隨x的增大而減小當(dāng)時,萬元(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【點睛】本題主要考查了一次函數(shù)的應(yīng)用,以及一元一次不等式組的應(yīng)用,此題是典型的數(shù)學(xué)建模問題,要先將實際問題轉(zhuǎn)化為不等式組解應(yīng)用題.22、(1)y=﹣x2﹣3x+4;(2)當(dāng)時,S有最大值;(3)點P的橫坐標(biāo)為﹣2或1或或.【解析】

(1)將代入,列方程組求出b、c的值即可;(2)連接PD,作軸交于點G,求出直線的解析式為,設(shè),則,,,當(dāng)時,S有最大值;(3)過點P作軸,設(shè),則,,根據(jù),列出關(guān)于x的方程,解之即可.【詳解】解:(1)將、代入,,∴二次函數(shù)的表達式;(2)連接,作軸交于點,如圖所示.在中,令y=0,得,∴直線AD的解析式為.設(shè),則,,∴.,∴當(dāng)時,S有最大值.(3)過點P作軸,設(shè),則,,,即,當(dāng)點P在y軸右側(cè)時,,,或,(舍去)或(舍去),當(dāng)點P在y軸左側(cè)時,x<0,,或,(舍去),或(舍去),綜上所述,存在點F,使與互余點P的橫坐標(biāo)為或或或.【點睛】本題是二次函數(shù),熟練掌握相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì)以及二次函數(shù)圖象的性質(zhì)等是解題的關(guān)鍵.23、(1),;(2)當(dāng)0<x<6時,kx+b<,當(dāng)x>6時,kx+b>【解析】

(1)根據(jù)點A和點B的坐標(biāo)求出一次函數(shù)的解析式,再求出C的坐標(biāo)6,2),利用待定系數(shù)法求解即可求出解析式(2)由C(6,2)分析圖形可知,當(dāng)0<x<6時,kx+b<,當(dāng)x>6時,kx+b>【詳解】(1)S△AOB=OA?OB=1,∴OA=2,∴點A的坐標(biāo)是(0,﹣2),∵B(1,0)∴∴∴y=x﹣2.當(dāng)x=6時,y=×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=.(2)由C(6,2),觀察圖象可知:當(dāng)0<x<6時,kx+b<,當(dāng)x>6時,kx+b>.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵在于求出C的坐標(biāo)24、.(1)見解析(2)【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B、C旋轉(zhuǎn)后的對應(yīng)點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據(jù)扇形的面積公式列式進行計算即可得解.【詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.25、(1)x≤1;(1)x≥﹣1;(3)見解析;(4)﹣1≤x≤1.【解析】

先求出不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在數(shù)軸上表示出來:;(4)原不等式組的解集為﹣1≤x≤1,故答案為x≤1,x≥﹣1,﹣1≤x≤1.【點睛】本題考查了解一元一次不等式組,能根據(jù)不等式的解集找出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論