




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古集寧二中2024屆高考數(shù)學(xué)二模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,函數(shù)的定義域為,集合,則下列結(jié)論正確的是A. B.C. D.2.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.603.設(shè)集合,則()A. B.C. D.4.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.5.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.6.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限C.的共軛復(fù)數(shù) D.7.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.8.命題“”的否定是()A. B.C. D.9.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.10.已知等差數(shù)列的前項和為,且,則()A.45 B.42 C.25 D.3611.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1012.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等比數(shù)列的前項和為,若,則數(shù)列的公比是.14.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.15.已知是偶函數(shù),則的最小值為___________.16.(5分)函數(shù)的定義域是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中18.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個零點.19.(12分)已知,,為正數(shù),且,證明:(1);(2).20.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.21.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.2、D【解析】
先設(shè)A點的坐標為,根據(jù)對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結(jié)合橢圓的標準方程,即可求解.【詳解】由題意,設(shè)A點的坐標為,根據(jù)對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.3、B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.4、D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果。【詳解】根據(jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D。【點睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。5、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.6、D【解析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.7、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.8、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.9、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標,利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計算能力,屬于中檔題.10、D【解析】
由等差數(shù)列的性質(zhì)可知,進而代入等差數(shù)列的前項和的公式即可.【詳解】由題,.故選:D【點睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項和.11、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.12、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
當q=1時,.當時,,所以.14、【解析】
由于,則.15、2【解析】
由偶函數(shù)性質(zhì)可得,解得,再結(jié)合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎(chǔ)題16、【解析】
要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、,概率為;列聯(lián)表詳見解析,有的把握認為交通安全意識與性別有關(guān);.【解析】
根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結(jié)論;用分層抽樣法求得抽取各分數(shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強安全意識不強合計男性女性合計所以有的把握認為交通安全意識與性別有關(guān).由題意可知分數(shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設(shè)的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設(shè)至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點睛】本題考查獨立性檢驗應(yīng)用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.18、見解析【解析】
(1)當時,函數(shù),其定義域為,則,設(shè),,易知函數(shù)在上單調(diào)遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設(shè),,顯然函數(shù)在上單調(diào)遞增,當時,,,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點;當時,,,所以函數(shù)有且僅有一個零點,所以函數(shù)有且僅有一個零點;當時,,,因為,所以,,又,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點.綜上,函數(shù)有且僅有一個零點.19、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結(jié)合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.20、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當時,,即當時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.21、(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.22、(1)(2)4【解析】
(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國精制老抽醬油行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國汽車助力轉(zhuǎn)向泵油箱行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國莫氏錐度變徑套數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國礦井提升機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國簡易物架數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國科普模型數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國烤漆打包鋼帶數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國抽丸刀數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國彩色轉(zhuǎn)黑白零照度攝像機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國塑料椅數(shù)據(jù)監(jiān)測研究報告
- 同濟大學(xué)《線性代數(shù)》-課件
- 醫(yī)院廉潔自律承諾書
- 申請兩癌補助申請書
- 香港審計合同范例
- 2024年10月自考00149國際貿(mào)易理論與實務(wù)試題及答案
- 2024年事業(yè)單位考試(面試)試題與參考答案
- 胚胎移植術(shù)前術(shù)后護理
- 《高層建筑結(jié)構(gòu)》課件
- 客戶驗貨培訓(xùn)
- 校園安全形勢會商研判制度(4篇)
- 連鑄應(yīng)急預(yù)案
評論
0/150
提交評論