2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型4 多邊形證明 類型2 特殊四邊形證明(專題訓(xùn)練)(教師版)_第1頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型4 多邊形證明 類型2 特殊四邊形證明(專題訓(xùn)練)(教師版)_第2頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型4 多邊形證明 類型2 特殊四邊形證明(專題訓(xùn)練)(教師版)_第3頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型4 多邊形證明 類型2 特殊四邊形證明(專題訓(xùn)練)(教師版)_第4頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型4 多邊形證明 類型2 特殊四邊形證明(專題訓(xùn)練)(教師版)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PAGE類型二特殊四邊形證明(專題訓(xùn)練)1.(2023·四川自貢·統(tǒng)考中考真題)在平行四邊形SKIPIF1<0中,點E、F分別在邊SKIPIF1<0和SKIPIF1<0上,且SKIPIF1<0.求證:SKIPIF1<0.【答案】見解析【分析】平行四邊形的性質(zhì)得到SKIPIF1<0,進而推出SKIPIF1<0,得到四邊形SKIPIF1<0是平行四邊形,即可得到SKIPIF1<0.【詳解】解:SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0.【點睛】本題考查平行四邊形的判定和性質(zhì).熟練掌握平行四邊形的判定方法,是解題的關(guān)鍵.2.(2023·山東·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0平分SKIPIF1<0,交SKIPIF1<0于點E;SKIPIF1<0平分SKIPIF1<0,交SKIPIF1<0于點F.求證:SKIPIF1<0.

【答案】證明見解析【分析】由平行四邊形的性質(zhì)得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由平行線的性質(zhì)和角平分線的性質(zhì)得出SKIPIF1<0,可證SKIPIF1<0,即可得出SKIPIF1<0.【詳解】證明:∵四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0.【點睛】本題主要考查平行四邊形的性質(zhì),平行線的性質(zhì)及全等三角形的判定與性質(zhì),根據(jù)題目已知條件熟練運用平行四邊形的性質(zhì),平行線的性質(zhì)是解答本題的關(guān)鍵.3.如圖,點E,F(xiàn)分別在菱形ABCD的邊BC,CD上,且BE=DF.求證:∠BAE=∠DAF.【分析】根據(jù)菱形的性質(zhì)可得∠B=∠D,AB=AD,再證明△ABE≌△ADF,即可得∠BAE=∠DAF.【解答】證明:四邊形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,AB=AD∠B=∠D∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.4.(2023·四川南充·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,點SKIPIF1<0,SKIPIF1<0在對角線SKIPIF1<0上,SKIPIF1<0.求證:

(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】見解析【分析】(1)根據(jù)平行四邊形的性質(zhì)推出相應(yīng)的線段和相應(yīng)的角度相等,再利用已知條件求證SKIPIF1<0,最后證明SKIPIF1<0即可求出答案.(2)根據(jù)三角形全等證明角度相等,再利用鄰補角定義推出SKIPIF1<0即可證明兩直線平行.【詳解】(1)證明:SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.(2)證明:由(1)得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.【點睛】本題考查了平行四邊形的性質(zhì),鄰補角定義,三角形全等,平行線的判定,解題的關(guān)鍵在于熟練掌握平行四邊形的性質(zhì).5.(2023·湖南·統(tǒng)考中考真題)如圖所示,在SKIPIF1<0中,點D、E分別為SKIPIF1<0的中點,點H在線段SKIPIF1<0上,連接SKIPIF1<0,點G、F分別為SKIPIF1<0的中點.

(1)求證:四邊形SKIPIF1<0為平行四邊形(2)SKIPIF1<0,求線段SKIPIF1<0的長度.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)由三角形中位線定理得到SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,即可證明四邊形SKIPIF1<0為平行四邊形;(2)由四邊形SKIPIF1<0為平行四邊形得到SKIPIF1<0,由SKIPIF1<0得到SKIPIF1<0,由勾股定理即可得到線段SKIPIF1<0的長度.【詳解】(1)解:∵點D、E分別為SKIPIF1<0的中點,∴SKIPIF1<0,∵點G、F分別為SKIPIF1<0、SKIPIF1<0的中點.∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形;(2)∵四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.【點睛】此題考查了中位線定理、平行四邊形的判定和性質(zhì)、勾股定理等知識,證明四邊形SKIPIF1<0為平行四邊形和利用勾股定理計算是解題的關(guān)鍵.6.如圖,在菱形ABCD中,將對角線AC分別向兩端延長到點E和F,使得AE=CF.連接DE,DF,BE,BF.求證:四邊形BEDF是菱形.【分析】四邊形ABCD是菱形,可得AB=BC=CD=DA,∠DCA=∠BCA,∠DAC=∠BAC,可以證明△CDF≌△CBF,△DAE≌△BFC,△DCF≌△BEA,進而證明平行四邊形BEDF是菱形.【解答】證明:∵四邊形ABCD是菱形,∴BC=CD,∠DCA=∠BCA,∴∠DCF=∠BCF,∵CF=CF,∴△CDF≌△CBF(SAS),∴DF=BF,∵AD∥BC,∴∠DAE=∠BCF,∵AE=CF,DA=AB,∴△DAE≌△BFC(SAS),∴DE=BF,同理可證:△DCF≌△BEA(SAS),∴DF=BE,∴四邊形BEDF是平行四邊形,∵DF=BF,∴平行四邊形BEDF是菱形.7.(2023·四川廣安·統(tǒng)考中考真題)如圖,在四邊形SKIPIF1<0中,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0,垂足分別為點SKIPIF1<0,且SKIPIF1<0.求證:四邊形SKIPIF1<0是平行四邊形.

【答案】見詳解【分析】先證明SKIPIF1<0,再證明SKIPIF1<0,再由平行四邊形的判定即可得出結(jié)論.【詳解】證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0是平行四邊形.【點睛】本題考查了平行四邊形的判定、全等三角形的判定與性質(zhì)等知識,熟練掌握平行四邊形的判定,證明三角形全等是解題的關(guān)鍵.8.(2023·湖北隨州·統(tǒng)考中考真題)如圖,矩形SKIPIF1<0的對角線SKIPIF1<0,SKIPIF1<0相交于點O,SKIPIF1<0.

(1)求證:四邊形SKIPIF1<0是菱形;(2)若SKIPIF1<0,求四邊形SKIPIF1<0的面積.【答案】(1)見解析;(2)3【分析】(1)先根據(jù)矩形的性質(zhì)求得SKIPIF1<0,然后根據(jù)有一組鄰邊相等的平行四邊形是菱形分析推理;(2)根據(jù)矩形的性質(zhì)求得SKIPIF1<0的面積,然后結(jié)合菱形的性質(zhì)求解.【詳解】(1)解:∵SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,又∵矩形SKIPIF1<0中,SKIPIF1<0,∴平行四邊形SKIPIF1<0是菱形;(2)解:矩形SKIPIF1<0的面積為SKIPIF1<0,∴SKIPIF1<0的面積為SKIPIF1<0,∴菱形SKIPIF1<0的面積為SKIPIF1<0.【點睛】本題考查矩形的性質(zhì)、菱形的判定,屬于中考基礎(chǔ)題,掌握矩形的性質(zhì)和菱形的判定方法,正確推理論證是解題關(guān)鍵.9.(2023·湖南永州·統(tǒng)考中考真題)如圖,已知四邊形SKIPIF1<0是平行四邊形,其對角線相交于點O,SKIPIF1<0.

(1)SKIPIF1<0是直角三角形嗎?請說明理由;(2)求證:四邊形SKIPIF1<0是菱形.【答案】(1)SKIPIF1<0是直角三角形,理由見解析.(2)見解析【分析】(1)根據(jù)平行四邊形對角線互相平分可得SKIPIF1<0,再根據(jù)勾股定理的逆定理,即可得出結(jié)論;(2)根據(jù)對角線互相垂直的平行四邊形是菱形,即可求證.【詳解】(1)解:SKIPIF1<0是直角三角形,理由如下:∵四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是直角三角形.(2)證明:由(1)可得:SKIPIF1<0是直角三角形,∴SKIPIF1<0,即SKIPIF1<0,∵四邊形SKIPIF1<0是平行四邊形,∴四邊形SKIPIF1<0是菱形.【點睛】本題主要考查了平行四邊形的性質(zhì),勾股定理的逆定理,菱形的判定,解題的關(guān)鍵是掌握平行四邊形對角線互相平分,對角線互相垂直的平行四邊形是菱形.9.(2023·浙江杭州·統(tǒng)考中考真題)如圖,平行四邊形SKIPIF1<0的對角線SKIPIF1<0相交于點SKIPIF1<0,點SKIPIF1<0在對角線SKIPIF1<0上,且SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.

(1)求證:四邊形SKIPIF1<0是平行四邊形.(2)若SKIPIF1<0的面積等于2,求SKIPIF1<0的面積.【答案】(1)見解析(2)1【分析】(1)根據(jù)平行四邊形對角線互相平分可得SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0可得SKIPIF1<0,即可證明四邊形SKIPIF1<0是平行四邊形;(2)根據(jù)等底等高的三角形面積相等可得SKIPIF1<0,再根據(jù)平行四邊形的性質(zhì)可得SKIPIF1<0.【詳解】(1)證明:SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形.(2)解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0SKIPIF1<0.【點睛】本題考查平行四邊形的判定與性質(zhì),解題的關(guān)鍵是掌握平行四邊形的對角線互相平分.10.(2023·湖南懷化·統(tǒng)考中考真題)如圖,矩形SKIPIF1<0中,過對角線SKIPIF1<0的中點SKIPIF1<0作SKIPIF1<0的垂線SKIPIF1<0,分別交SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0.

(1)證明:SKIPIF1<0;(2)連接SKIPIF1<0、SKIPIF1<0,證明:四邊形SKIPIF1<0是菱形.【答案】(1)見解析;(2)見解析【分析】(1)根據(jù)矩形的性質(zhì)得出SKIPIF1<0,則SKIPIF1<0,根據(jù)SKIPIF1<0是SKIPIF1<0的中點,可得SKIPIF1<0,即可證明SKIPIF1<0;(2)根據(jù)SKIPIF1<0可得SKIPIF1<0,進而可得四邊形SKIPIF1<0是平行四邊形,根據(jù)對角線互相垂直的四邊形是菱形,即可得證.【詳解】(1)證明:如圖所示,

∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的中點,∴SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0;(2)∵SKIPIF1<0∴SKIPIF1<0,又∵SKIPIF1<0∴四邊形SKIPIF1<0是平行四邊形,∵SKIPIF1<0∴四邊形SKIPIF1<0是菱形.【點睛】本題考查了矩形的性質(zhì),全等三角形的性質(zhì)與判定,菱形的判定,熟練掌握特殊四邊形的性質(zhì)與判定是解題的關(guān)鍵.11.如圖,在矩形ABCD中,點E、F分別是邊AB、CD的中點.求證:DE=BF.【答案】證明見試題解析.【分析】由矩形的性質(zhì)和已知得到DF=BE,AB∥CD,故四邊形DEBF是平行四邊形,即可得到答案.【詳解】∵四邊形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分別是邊AB、CD的中點,∴DF=BE,又AB∥CD,∴四邊形DEBF是平行四邊形,∴DE=BF.考點:1.矩形的性質(zhì);2.全等三角形的判定.12.(2023·新疆·統(tǒng)考中考真題)如圖,SKIPIF1<0和SKIPIF1<0相交于點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.點SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點.

(1)求證:SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,求證:四邊形SKIPIF1<0是矩形.【答案】(1)見解析;(2)見解析【分析】(1)直接證明SKIPIF1<0,得出SKIPIF1<0,根據(jù)SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點,即可得證;(2)證明四邊形SKIPIF1<0是平行四邊形,進而根據(jù)SKIPIF1<0,推導(dǎo)出SKIPIF1<0是等邊三角形,進而可得SKIPIF1<0,即可證明四邊形SKIPIF1<0是矩形.【詳解】(1)證明:在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點,∴SKIPIF1<0;(2)∵SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是矩形.【點睛】本題考查了全等三角形的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,矩形判定,熟練掌握以上知識是解題的關(guān)鍵.13.已知:如圖,在?ABCD中,點O是CD的中點,連接AO并延長,交BC的延長線于點E,求證:AD=CE.【分析】只要證明△AOD≌△EOC(ASA)即可解決問題;【解答】證明:∵O是CD的中點,∴OD=CO,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∠D=∠OCEOD=OC∴△AOD≌△EOC(ASA),∴AD=CE.14.如圖,在?ABCD中,點E在AB的延長線上,點F在CD的延長線上,滿足BE=DF.連接EF,分別與BC,AD交于點G,H.求證:EG=FH.【分析】根據(jù)平行四邊形的性質(zhì)和全等三角形的判定和性質(zhì)定理即可得到結(jié)論.【解答】證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,∠ABC=∠FDH,在△BEG與△DFH中,∠E=∠FBE=DF∴△BEG≌△DFH(ASA),∴EG=FH.15.(2023·云南·統(tǒng)考中考真題)如圖,平行四邊形SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的平分線,且SKIPIF1<0分別在邊SKIPIF1<0上,SKIPIF1<0.

(1)求證:四邊形SKIPIF1<0是菱形;(2)若SKIPIF1<0,SKIPIF1<0的面積等于SKIPIF1<0,求平行線SKIPIF1<0與SKIPIF1<0間的距離.【答案】(1)證明見解析;(2)SKIPIF1<0【分析】(1)先證SKIPIF1<0,再證SKIPIF1<0,從而四邊形SKIPIF1<0是平行四邊形,又SKIPIF1<0,于是四邊形SKIPIF1<0是菱形;(2)連接SKIPIF1<0,先求得SKIPIF1<0,再證SKIPIF1<0,SKIPIF1<0,于是有SKIPIF1<0,得SKIPIF1<0,再證SKIPIF1<0,從而根據(jù)面積公式即可求得SKIPIF1<0SKIPIF1<0.【詳解】(1)證明:∵四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0分別是SKIPIF1<0的平分線,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∵SKIPIF1<0,∴四邊形SKIPIF1<0是菱形;(2)解:連接SKIPIF1<0,

∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0是菱形,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的面積等于SKIPIF1<0,∴SKIPIF1<0,∴平行線SKIPIF1<0與SKIPIF1<0間的距離SKIPIF1<0SKIPIF1<0.【點睛】本題考查了平行四邊形的判定及性質(zhì),菱形的判定,角平分線的定義,等腰三角形的判定,三角函數(shù)的應(yīng)用以及平行線間的距離,熟練掌握平行四邊形的判定及性質(zhì),菱形的判定,角平分線的定義,等腰三角形的判定,三角函數(shù)的應(yīng)用以及平行線間的距離等知識是解題的關(guān)鍵.16.如圖,?ABCD的對角線AC、BD相交于點O,過點O作EF⊥AC,分別交AB、DC于點E、F,連接AF、CE.(1)若OE=3(2)判斷四邊形AECF的形狀,并說明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=3(2)先判定四邊形AECF是平行四邊形,再根據(jù)EF⊥AC,即可得到四邊形AECF是菱形.【解析】(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=3∴EF=2OE=3;(2)四邊形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.17.(2023·浙江嘉興·統(tǒng)考中考真題)如圖,在菱形SKIPIF1<0中,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0

(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的度數(shù).【答案】(1)證明見解析;(2)SKIPIF1<0【分析】(1)根據(jù)菱形的性質(zhì)的三角形全等即可證明SKIPIF1<0.(2)根據(jù)菱形的性質(zhì)和已知條件可推出SKIPIF1<0度數(shù),再根據(jù)第一問的三角形全等和直角三角形的性質(zhì)可求出SKIPIF1<0和SKIPIF1<0度數(shù),從而求出SKIPIF1<0度數(shù),證明了等邊三角形SKIPIF1<0,即可求出SKIPIF1<0的度數(shù).【詳解】(1)證明:SKIPIF1<0菱形SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.(2)解:SKIPIF1<0菱形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0.由(1)知SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0,SKIPIF1<0等邊三角形.SKIPIF1<0.【點睛】本題考查了三角形全等、菱形的性質(zhì)、等邊三角形的性質(zhì),解題的關(guān)鍵在于熟練掌握全等的方法和菱形的性質(zhì).18.已知:如圖,在?ABCD中,點E、F分別在AD、BC上,且BE平分∠ABC,EF∥AB.求證:四邊形ABFE是菱形.【答案】見解析【分析】先證四邊形ABFE是平行四邊形,由平行線的性質(zhì)和角平分線的性質(zhì)證AB=AE,依據(jù)有一組鄰邊相等的平行四邊形是菱形證明即可.【解析】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,又∵EF∥AB,∴四邊形ABFE是平行四邊形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四邊形ABFE是菱形.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的判定、菱形的判定,解題關(guān)鍵是熟練運用相關(guān)知識進行推理證明,特別注意角平分線加平行,可證等腰三角形.19.(2023·湖南張家界·統(tǒng)考中考真題)如圖,已知點A,D,C,B在同一條直線上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.

(1)求證:SKIPIF1<0;(2)若SKIPIF1<0時,求證:四邊形SKIPIF1<0是菱形.【答案】(1)見解析;(2)見解析【分析】(1)根據(jù)題意得出SKIPIF1<0,再由全等三角形的判定和性質(zhì)及平行線的判定證明即可;(2)方法一:利用全等三角形的判定和性質(zhì)得出SKIPIF1<0,又SKIPIF1<0,再由菱形的判定證明即可;方法二:利用(1)中結(jié)論得出SKIPIF1<0,結(jié)合菱形的判定證明即可.【詳解】(1)證明:∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0(2)方法一:在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形∵SKIPIF1<0,∴SKIPIF1<0是菱形;方法二:∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形∵SKIPIF1<0,∴SKIPIF1<0是菱形.【點睛】題目主要考查全等三角形的判定和性質(zhì),菱形的判定和性質(zhì),理解題意,熟練掌握運用這些知識點是解題關(guān)鍵.20.如圖,四邊形SKIPIF1<0是菱形,點SKIPIF1<0、SKIPIF1<0分別在邊SKIPIF1<0、SKIPIF1<0的延長線上,且SKIPIF1<0.連接SKIPIF1<0、SKIPIF1<0.求證:SKIPIF1<0.【答案】見解析【分析】根據(jù)菱形的性質(zhì)得到BC=CD,∠ADC=∠ABC,根據(jù)SAS證明△BEC≌△DFC,可得CE=CF.【詳解】解:∵四邊形ABCD是菱形,∴BC=CD,∠ADC=∠ABC,∴∠CDF=∠CBE,在△BEC和△DFC中,SKIPIF1<0,∴△BEC≌△DFC(SAS),∴CE=CF.【點睛】本題考查了菱形的性質(zhì),全等三角形的判定和性質(zhì),解題的關(guān)鍵是根據(jù)菱形得到判定全等的條件.21.(2023·四川內(nèi)江·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,D是SKIPIF1<0的中點,E是SKIPIF1<0的中點,過點A作SKIPIF1<0交SKIPIF1<0的延長線于點F.

(1)求證:SKIPIF1<0;(2)連接SKIPIF1<0,若SKIPIF1<0,求證:四邊形SKIPIF1<0是矩形.【答案】(1)見解析;(2)見解析;【分析】(1)根據(jù)兩直線平行,內(nèi)錯角相等求出SKIPIF1<0,然后利用“角角邊”證明三角形全等,再由全等三角形的性質(zhì)容易得出結(jié)論;(2)先利用一組對邊平行且相等的四邊形是平行四邊形證明四邊形SKIPIF1<0是平行四邊形,再根據(jù)一個角是直角的平行四邊形是矩形判定即可.【詳解】(1)證明:∵SKIPIF1<0,∴SKIPIF1<0,∵點E為SKIPIF1<0的中點,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0;∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)證明:SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∵SKIPIF1<0,∴SKIPIF1<0,∴平行四邊形SKIPIF1<0是矩形.【點睛】本題考查了矩形的判定,全等三角形的判定與性質(zhì),平行四邊形的判定,是基礎(chǔ)題,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.22.如圖,在SKIPIF1<0中,SKIPIF1<0的角平分線交SKIPIF1<0于點D,SKIPIF1<0.(1)試判斷四邊形SKIPIF1<0的形狀,并說明理由;(2)若SKIPIF1<0,且SKIPIF1<0,求四邊形SKIPIF1<0的面積.【答案】(1)菱形,理由見解析;(2)4【分析】(1)根據(jù)DE∥AB,DF∥AC判定四邊形AFDE是平行四邊形,再根據(jù)平行線的性質(zhì)和角平分線的定義得到∠EDA=∠EAD,可得AE=DE,即可證明;(2)根據(jù)∠BAC=90°得到菱形AFDE是正方形,根據(jù)對角線AD求出邊長,再根據(jù)面積公式計算即可.【詳解】解:(1)四邊形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四邊形AFDE是平行四邊形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四邊形AFDE是菱形;(2)∵∠BAC=90°,∴四邊形AFDE是正方形,∵AD=SKIPIF1<0,∴AF=DF=DE=AE=SKIPIF1<0=2,∴四邊形AFDE的面積為2×2=4.【點睛】本題考查了菱形的判定,正方形的判定和性質(zhì),平行線的性質(zhì),角平分線的定義,解題的關(guān)鍵是掌握特殊四邊形的判定方法.23.(2023·四川樂山·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,點D為SKIPIF1<0邊上任意一點(不與點A、B重合),過點D作SKIPIF1<0,SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于點E、F,連接SKIPIF1<0.

(1)求證:四邊形SKIPIF1<0是矩形;(2)若SKIPIF1<0,求點C到SKIPIF1<0的距離.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)利用平行線的性質(zhì)證明SKIPIF1<0,再利用四邊形內(nèi)角和為SKIPIF1<0,證明SKIPIF1<0,即可由矩形判定定理得出結(jié)論;(2)先由勾股定理求出SKIPIF1<0,再根據(jù)三角形面積公式求解即可.【詳解】(1)證明:∵SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∵SKIPIF1<0,∴四邊形SKIPIF1<0是矩形.(2)解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0設(shè)點C到SKIPIF1<0的距離為h,∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0答:點C到SKIPIF1<0的距離為SKIPIF1<0.【點睛】本題考查矩形的判定,平行線的性質(zhì),勾股定理.熟練掌握矩形的判定定理和利用面積法求線段長是解題的關(guān)鍵.24.如圖,矩形ABCD的對角線AC、BD相交于點O,SKIPIF1<0,SKIPIF1<0.(1)求證:四邊形AOBE是菱形;(2)若SKIPIF1<0,SKIPIF1<0,求菱形AOBE的面積.【答案】(1)證明過程見解答;(2)SKIPIF1<0【分析】(1)根據(jù)BE∥AC,AE∥BD,可以得到四邊形AOBE是平行四邊形,然后根據(jù)矩形的性質(zhì),可以得到OA=OB,由菱形的定義可以得到結(jié)論成立;(2)根據(jù)∠AOB=60°,AC=4,可以求得菱形AOBE邊OA上的高,然后根據(jù)菱形的面積=底×高,代入數(shù)據(jù)計算即可.【解析】解:(1)證明:∵BE∥AC,AE∥BD,∴四邊形AOBE是平行四邊形,∵四邊形ABCD是矩形,∴AC=BD,OA=OC=SKIPIF1<0AC,OB=OD=SKIPIF1<0BD,∴OA=OB,∴四邊形AOBE是菱形;(2)解:作BF⊥OA于點F,∵四邊形ABCD是矩形,AC=4,∴AC=BD=4,OA=OC=SKIPIF1<0AC,OB=OD=SKIPIF1<0BD,∴OA=OB=2,∵∠AOB=60°,∴BF=OB?sin∠AOB=SKIPIF1<0,∴菱形AOBE的面積是:OA?BF=SKIPIF1<0=SKIPIF1<0.【點睛】本題考查菱形的判定、矩形的性質(zhì),解答本題的關(guān)鍵是明確菱形的判定方法,知道菱形的面積=底×高或者是對角線乘積的一半.25.如圖,點C是SKIPIF1<0的中點,四邊形SKIPIF1<0是平行四邊形.(1)求證:四邊形SKIPIF1<0是平行四邊形;(2)如果SKIPIF1<0,求證:四邊形SKIPIF1<0是矩形.【答案】(1)見解析;(2)見解析【分析】(1)由平行四邊形的性質(zhì)以及點C是BE的中點,得到AD∥CE,AD=CE,從而證明四邊形ACED是平行四邊形;(2)由平行四邊形的性質(zhì)證得DC=AE,從而證明平行四邊形ACED是矩形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC.∵點C是BE的中點,∴BC=CE,∴AD=CE,∵AD∥CE,∴四邊形ACED是平行四邊形;(2)∵四邊形ABCD是平行四邊形,∴AB=DC,∵AB=AE,∴DC=AE,∵四邊形ACED是平行四邊形,∴四邊形ACED是矩形.【點睛】本題考查了平行四邊形和矩形的判定和性質(zhì),正確的識別圖形是解題的關(guān)鍵.26.如圖,在平行四邊形ABCD中,對角線AC與BD相交于點O,過點O的直線EF與BA、DC的延長線分別交于點E、F.(1)求證:AE=CF;(2)請再添加一個條件,使四邊形BFDE是菱形,并說明理由.【答案】(1)見解析;(2)EF⊥BD或EB=ED,見解析【分析】(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明SKIPIF1<0,則可得到AE=CF;(2)連接BF,DE,由SKIPIF1<0,得到OE=OF,又AO=CO,所以四邊形AECF是平行四邊形,則根據(jù)EF⊥BD可得四邊形BFDE是菱形.【詳解】證明:(1)∵四邊形SKIPIF1<0是平行四邊形∴OA=OC,BE∥DF∴∠E=∠F在△AOE和△COF中SKIPIF1<0∴SKIPIF1<0SKIPIF1<0∴AE=CF(2)當(dāng)EF⊥BD時,四邊形BFDE是菱形,理由如下:如圖:連結(jié)BF,DE∵四邊形SKIPIF1<0是平行四邊形∴OB=OD∵SKIPIF1<0∴SKIPIF1<0∴四邊形SKIPIF1<0是平行四邊形∵EF⊥BD,∴四邊形SKIPIF1<0是菱形【點睛】本題主要考查了全等三角形的性質(zhì)與判定、平行四邊形的性質(zhì),菱形的判定等知識點,熟悉相關(guān)性質(zhì),能全等三角形的性質(zhì)解決問題是解題的關(guān)鍵.27.如圖,在?ABCD中,對角線AC與BD相交于點O,點E,F(xiàn)分別在BD和DB的延長線上,且DE=BF,連接AE,CF.(1)求證:△ADE≌△CBF;(2)連接AF,CE.當(dāng)BD平分∠ABC時,四邊形AFCE是什么特殊四邊形?請說明理由.【分析】(1)根據(jù)四邊形ABCD是平行四邊形,可以得到AD=CB,∠ADC=∠CBA,從而可以得到∠ADE=∠CBF,然后根據(jù)SAS即可證明結(jié)論成立;(2)根據(jù)BD平分∠ABC和平行四邊形的性質(zhì),可以證明?ABCD是菱形,從而可以得到AC⊥BD,然后即可得到AC⊥EF,再根據(jù)題目中的條件,可以證明四邊形AFCE是平行四邊形,然后根據(jù)AC⊥EF,即可得到四邊形AFCE是菱形.【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBF∴△ADE≌△CBF(SAS);(2)當(dāng)BD平分∠ABC時,四邊形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四邊形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四邊形AFCE是平行四邊形,∵AC⊥EF,∴四邊形AFCE是菱形.28.如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,分別過點A,C作AE⊥BD,CF⊥BD,垂足分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論