陜西省商洛2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第1頁
陜西省商洛2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第2頁
陜西省商洛2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第3頁
陜西省商洛2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第4頁
陜西省商洛2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省商洛2023-2024學(xué)年中考猜題數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,矩形ABOC的頂點(diǎn)A的坐標(biāo)為(﹣4,5),D是OB的中點(diǎn),E是OC上的一點(diǎn),當(dāng)△ADE的周長最小時(shí),點(diǎn)E的坐標(biāo)是()A.(0,) B.(0,) C.(0,2) D.(0,)2.如圖是由五個(gè)相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.3.小紅上學(xué)要經(jīng)過三個(gè)十字路口,每個(gè)路口遇到紅、綠燈的機(jī)會都相同,小紅希望小學(xué)時(shí)經(jīng)過每個(gè)路口都是綠燈,但實(shí)際這樣的機(jī)會是()A. B. C. D.4.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點(diǎn)得到直線l,在直線l上取一點(diǎn)C,使得∠CAB=25°,延長AC至點(diǎn)M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°5.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.6.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點(diǎn),PQ⊥AC交折線A﹣D﹣C于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.7.如圖是某個(gè)幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐8.下列關(guān)于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.a(chǎn)x2+bx+c=09.已知關(guān)于x的二次函數(shù)y=x2﹣2x﹣2,當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣310.在一些美術(shù)字中,有的漢字是軸對稱圖形.下面4個(gè)漢字中,可以看作是軸對稱圖形的是()A. B. C. D.11.矩形ABCD與CEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.12.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實(shí)數(shù))在–1<x<4的范圍內(nèi)有實(shí)數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<7二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若代數(shù)式在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)x的取值范圍為_____.14.某公司銷售一種進(jìn)價(jià)為21元的電子產(chǎn)品,按標(biāo)價(jià)的九折銷售,仍可獲利20%,則這種電子產(chǎn)品的標(biāo)價(jià)為_________元.15.不等式組的解集是_____;16.如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長之和為_______cm.17.一個(gè)凸多邊形的內(nèi)角和與外角和相等,它是______邊形.18.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點(diǎn),則CP+AP的最小值為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解分式方程:-1=20.(6分)如圖,在平行四邊形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,AF=DE求證:(1)△ABF≌△DCE;四邊形ABCD是矩形.21.(6分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF=12(1)求證:直線BF是⊙O的切線;(2)若AB=5,sin∠CBF=5522.(8分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點(diǎn),與AB邊交于點(diǎn)D.(1)求拋物線的函數(shù)表達(dá)式;(2)點(diǎn)P為線段BC上一個(gè)動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;②當(dāng)S最大時(shí),在拋物線的對稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.23.(8分)小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:他認(rèn)為該定理有逆定理:“如果一個(gè)三角形某條邊上的中線等于該邊長的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問的結(jié)論)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時(shí)矩形的兩條鄰邊與的數(shù)量關(guān)系.24.(10分)某校對六至九年級學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題:該校對多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有200名學(xué)生,如圖是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請估計(jì)全校六至九年級學(xué)生中最喜歡跳繩活動的人數(shù)約為多少?25.(10分)如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點(diǎn)為P.(1)求拋物線解析式;(2)在拋物線是否存在點(diǎn)E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點(diǎn)E的坐標(biāo);若不存在,請說明理由;(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)F,使得以A、B、P、F為頂點(diǎn)的四邊形為平行四邊形?直接寫出所有符合條件的點(diǎn)F的坐標(biāo),并求出平行四邊形的面積.26.(12分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.27.(12分)2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調(diào)查中學(xué)生對冬奧會比賽項(xiàng)目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個(gè)等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計(jì)圖表.對冬奧會了解程度的統(tǒng)計(jì)表對冬奧會的了解程度百分比A非常了解10%B比較了解15%C基本了解35%D不了解n%(1)n=;(2)扇形統(tǒng)計(jì)圖中,D部分扇形所對應(yīng)的圓心角是;(3)請補(bǔ)全條形統(tǒng)計(jì)圖;(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設(shè)計(jì)了如下游戲來確定誰參賽,具體規(guī)則是:把四個(gè)完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4然后放到一個(gè)不透明的袋中,一個(gè)人先從袋中摸出一個(gè)球,另一人再從剩下的三個(gè)球中隨機(jī)摸出一個(gè)球,若摸出的兩個(gè)球上的數(shù)字和為偶數(shù),則小明去,否則小剛?cè)?,請用畫樹狀圖或列表的方法說明這個(gè)游戲是否公平.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】解:作A關(guān)于y軸的對稱點(diǎn)A′,連接A′D交y軸于E,則此時(shí),△ADE的周長最小.∵四邊形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐標(biāo)為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點(diǎn),∴D(﹣2,0).設(shè)直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當(dāng)x=0時(shí),y=,∴E(0,).故選B.2、A【解析】試題分析:從上面看易得上面一層有3個(gè)正方形,下面中間有一個(gè)正方形.故選A.【考點(diǎn)】簡單組合體的三視圖.3、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個(gè)路口都是綠燈的有一種,∴實(shí)際這樣的機(jī)會是.故選B.點(diǎn)睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時(shí)要注意列出所有的情形.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.5、D【解析】∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,∴AC=AB=1.設(shè)⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.6、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點(diǎn)Q在AD上時(shí),PA=PQ,∴DP=AP=x,∴S=;當(dāng)點(diǎn)Q在DC上時(shí),PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點(diǎn)睛】本題考查動點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在AP、DC上這兩種情況.7、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個(gè)矩形,左視圖是矩形,所以這個(gè)幾何體是三棱柱,故選A.考點(diǎn):由三視圖判定幾何體.8、B【解析】

根據(jù)一元二次方程必須同時(shí)滿足三個(gè)條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2進(jìn)行分析即可.【詳解】A.未知數(shù)的最高次數(shù)不是2

,不是一元二次方程,故此選項(xiàng)錯誤;

B.

是一元二次方程,故此選項(xiàng)正確;

C.

未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項(xiàng)錯誤;

D.

a=0時(shí),不是一元二次方程,故此選項(xiàng)錯誤;

故選B.【點(diǎn)睛】本題考查一元二次方程的定義,解題的關(guān)鍵是明白:一元二次方程必須同時(shí)滿足三個(gè)條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2.9、A【解析】分析:詳解:∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點(diǎn)睛:本題考查了求二次函數(shù)的最大(小)值的方法,注意:只有當(dāng)自變量x在整個(gè)取值范圍內(nèi),函數(shù)值y才在頂點(diǎn)處取最值,而當(dāng)自變量取值范圍只有一部分時(shí),必須結(jié)合二次函數(shù)的增減性及對稱軸判斷何處取最大值,何處取最小值.10、A【解析】

根據(jù)軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【點(diǎn)睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.11、C【解析】分析:延長GH交AD于點(diǎn)P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點(diǎn)P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點(diǎn),∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點(diǎn)睛:本題主要考查矩形的性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定與性質(zhì)、矩形的性質(zhì)、勾股定理等知識點(diǎn).12、B【解析】

利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點(diǎn)坐標(biāo)為(1,﹣2),再計(jì)算當(dāng)﹣1<x<4時(shí)對應(yīng)的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點(diǎn),然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點(diǎn)坐標(biāo)為(1,﹣2),當(dāng)x=﹣1時(shí),y=x2﹣2x﹣1=2;當(dāng)x=4時(shí),y=x2﹣2x﹣1=7,當(dāng)﹣1<x<4時(shí),﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點(diǎn),∴﹣2≤t<7,故選B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點(diǎn)、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x≤1【解析】

根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是利用被開方數(shù)是非負(fù)數(shù)解答即可.14、28【解析】設(shè)這種電子產(chǎn)品的標(biāo)價(jià)為x元,由題意得:0.9x?21=21×20%,解得:x=28,所以這種電子產(chǎn)品的標(biāo)價(jià)為28元.故答案為28.15、x≤1【解析】分析:分別求出不等式組中兩個(gè)不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點(diǎn)睛:本題主要考查了解一元一次不等式組.16、1.【解析】試題分析:∵將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD為等邊三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF與△BDF的周長之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案為1.考點(diǎn):旋轉(zhuǎn)的性質(zhì).17、四【解析】

任何多邊形的外角和是360度,因而這個(gè)多邊形的內(nèi)角和是360度.n邊形的內(nèi)角和是(n-2)?180°,如果已知多邊形的內(nèi)角和,就可以得到一個(gè)關(guān)于邊數(shù)的方程,解方程就可以求出多邊形的邊數(shù).【詳解】解:設(shè)邊數(shù)為n,根據(jù)題意,得(n-2)?180=360,解得n=4,則它是四邊形.故填:四.【點(diǎn)睛】此題主要考查已知多邊形的內(nèi)角和求邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.18、【解析】

可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、7【解析】

根據(jù)分式的性質(zhì)及等式的性質(zhì)進(jìn)行去分母,去括號,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1即可.【詳解】-1=3-(x-3)=-13-x+3=-1x=7【點(diǎn)睛】此題主要考查分式方程的求解,解題的關(guān)鍵是正確去掉分母.20、(1)見解析;(2)見解析.【解析】

(1)根據(jù)等量代換得到BE=CF,根據(jù)平行四邊形的性質(zhì)得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四邊形的性質(zhì)得到兩邊平行,從而∠B+∠C=180°.利用全等得∠B=∠C,從而得到一個(gè)直角,問題得證.【詳解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四邊形ABCD是平行四邊形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四邊形ABCD是平行四邊形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四邊形ABCD是矩形.21、(1)證明見解析;(2)BC=25;BF=【解析】(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.(2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長即可.(1)證明:連接AE,∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直徑,∴直線BF是⊙O的切線.(2)解:過點(diǎn)C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB?sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.22、(1);(2)①,當(dāng)m=5時(shí),S取最大值;②滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為,,,,【解析】

(1)將A、C兩點(diǎn)坐標(biāo)代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;

(2)①先用m表示出QE的長度,進(jìn)而求出三角形的面積S關(guān)于m的函數(shù);

②直接寫出滿足條件的F點(diǎn)的坐標(biāo)即可,注意不要漏寫.【詳解】解:(1)將A、C兩點(diǎn)坐標(biāo)代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點(diǎn)Q作QE⊥BC與E點(diǎn),則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當(dāng)m=5時(shí),S取最大值;在拋物線對稱軸l上存在點(diǎn)F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標(biāo)為(3,8),Q(3,4),當(dāng)∠FDQ=90°時(shí),F(xiàn)1(,8),當(dāng)∠FQD=90°時(shí),則F2(,4),當(dāng)∠DFQ=90°時(shí),設(shè)F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【點(diǎn)睛】本題考查二次函數(shù)的綜合應(yīng)用能力,其中涉及到的知識點(diǎn)有拋物線的解析式的求法拋物線的最值等知識點(diǎn),是各地中考的熱點(diǎn)和難點(diǎn),解題時(shí)注意數(shù)形結(jié)合數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.23、(1)詳見解析;(2)詳見解析;(3)【解析】

(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;

(2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;

(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.【詳解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如圖②,連接與,交點(diǎn)為,連接四邊形是矩形(3)如圖3,過點(diǎn)做于點(diǎn)四邊形是矩形,是等邊三角形,由(2)知,在中,,【點(diǎn)睛】此題是四邊形綜合題,主要考查了矩形是性質(zhì),直角三角形的性質(zhì)和判定,含30°角的直角三角形的性質(zhì),三角形的內(nèi)角和公式,解(1)的關(guān)鍵是判斷出∠B=∠BAD,解(2)的關(guān)鍵是判斷出OE=AC,解(3)的關(guān)鍵是判斷出△ABE是底角為30°的等腰三角形,進(jìn)而構(gòu)造直角三角形.24、(1)50(2)36%(3)160【解析】

(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計(jì)總體,先求出九年級占全校總?cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動的學(xué)生所占的百分比,繼而可估計(jì)出全校學(xué)生中最喜歡跳繩活動的人數(shù).【詳解】(1)該校對名學(xué)生進(jìn)行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計(jì)全校學(xué)生中最喜歡跳繩活動的人數(shù)約為人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大小.25、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)點(diǎn)F的坐標(biāo)為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1【解析】

(1)設(shè)拋物線解析式為y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根據(jù)拋物線解析式可知頂點(diǎn)P的坐標(biāo),由兩個(gè)三角形的底相同可得要使兩個(gè)三角形面積相等則高相等,根據(jù)P點(diǎn)坐標(biāo)可知E點(diǎn)縱坐標(biāo),代入解析式求出x的值即可;(3)分別討論AB為邊、AB為對角線兩種情況求出F點(diǎn)坐標(biāo)并求出面積即可;【詳解】(1)設(shè)拋物線解析式為y=ax2+bx+c,將(﹣3,0),(1,0),(0,)代入拋物線解析式得,解得:a=,b=1,c=﹣∴拋物線解析式:y=x2+x﹣(2)存在.∵y=x2+x﹣=(x+1)2﹣2∴P點(diǎn)坐標(biāo)為(﹣1,﹣2)∵△ABP的面積等于△ABE的面積,∴點(diǎn)E到AB的距離等于2,設(shè)E(a,2),∴a2+a﹣=2解得a1=﹣1﹣2,a2=﹣1+2∴符合條件的點(diǎn)E的坐標(biāo)為(﹣1﹣2,2)或(﹣1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論