版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆北京市牛山一中高考數(shù)學(xué)考前最后一卷預(yù)測卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.3.以,為直徑的圓的方程是A. B.C. D.4.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.5.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.6.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.7.已知,則()A.5 B. C.13 D.8.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)9.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.10.關(guān)于函數(shù),有下述三個結(jié)論:①函數(shù)的一個周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域為.其中所有正確結(jié)論的編號是()A.①② B.② C.②③ D.③11.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.1212.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.14.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.15.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.16.(5分)在平面直角坐標(biāo)系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.18.(12分)在平面直角坐標(biāo)系中,已知點,曲線:(為參數(shù))以原點為極點,軸正半軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;(Ⅱ)設(shè)直線與曲線的兩個交點分別為,,求的值.19.(12分)已知函數(shù)的定義域為.(1)求實數(shù)的取值范圍;(2)設(shè)實數(shù)為的最小值,若實數(shù),,滿足,求的最小值.20.(12分)已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.21.(12分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設(shè)且.(1)求點的坐標(biāo);(2)求的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的解集包含,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.2、B【解析】
對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時,函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點,根據(jù)中點坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.4、D【解析】
由,可求出等比數(shù)列的通項公式,進而可知當(dāng)時,;當(dāng)時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時,;當(dāng)時,,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.5、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題6、C【解析】
,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.7、C【解析】
先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復(fù)數(shù)的運算,是基礎(chǔ)題.8、D【解析】
將復(fù)數(shù)整理為的形式,分別判斷四個選項即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復(fù)數(shù)的模長、實部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.9、D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當(dāng)時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當(dāng)時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.10、C【解析】
①用周期函數(shù)的定義驗證.②當(dāng)時,,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當(dāng)時,再求值域.【詳解】因為,故①錯誤;當(dāng)時,,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當(dāng)時,,故③正確.故選:C.【點睛】本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.11、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B12、D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標(biāo),然后將點縱坐標(biāo)帶入圓的方程即可得出點坐標(biāo),最后將點坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標(biāo)為,將點縱坐標(biāo)帶入圓的方程中可得,解得,,將點坐標(biāo)帶入雙曲線中可得,化簡得,,,,故選D?!军c睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。二、填空題:本題共4小題,每小題5分,共20分。13、丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應(yīng)用.14、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時和當(dāng)時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時,,可得:,或(舍去);當(dāng)時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.15、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.16、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時,恒成立,當(dāng)時,,綜上,當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當(dāng)時,在單調(diào)遞增,且,函數(shù)只有一個零點,原方程只有一個解,當(dāng)時,由(1)得在出取得極小值,也是最小值,當(dāng)時,,此時函數(shù)只有一個零點,原方程只有一個解,當(dāng)且遞增區(qū)間時,遞減區(qū)間時;,當(dāng),有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.18、(Ⅰ)點在直線上;見解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標(biāo)方程為,因為,所以點在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標(biāo)方程為,因為,所以點在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設(shè)兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標(biāo)參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.19、(1);(2)【解析】
(1)首先通過對絕對值內(nèi)式子符號的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數(shù)定義域為,即恒成立,所以恒成立由單調(diào)性可知當(dāng)時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1);(2)證明見解析.【解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對任意兩個不等的正實數(shù),都有恒成立.則在上單調(diào)遞減,因為,當(dāng)時,在內(nèi)單調(diào)遞減.,當(dāng)時,由,有,此時,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計算能力.21、(1);(2).【解析】
(1)設(shè)出的坐標(biāo),代入,結(jié)合在拋物線上,求得兩點的橫坐標(biāo),進而求得點的坐標(biāo).(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,結(jié)合,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得的取值范圍.【詳解】(1)可知,設(shè)則,又,所以解得所以.(2)據(jù)題意,直線的斜率必不為所以設(shè)將直線方程代入橢圓的方程中,整理得,設(shè)則①②因為所以且將①式平方除以②式得所以又解得又,所以令,則所以【點睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線和橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年拉薩貨運從業(yè)資格證模擬考試
- 2025年瀘州貨車資格證考試題
- 【課件】MBA管理故事培訓(xùn)教材
- 《撐起自我保護傘》課件
- 家庭假期安全教育的實施步驟與流程
- 《收入中財大》課件
- 2025江西省商品的銷售合同
- 2024年黑龍江牡丹江市中考物理真題卷及答案解析
- 2024年江蘇省徐州市中考英語真題卷及答案解析
- 智能家居模板施工勞務(wù)合同
- 出租房屋安全檢查制度模版(2篇)
- 《森林防火安全教育》主題班會 課件
- 漏洞修復(fù)策略優(yōu)化
- 手術(shù)安全培訓(xùn)
- 乘風(fēng)化麟 蛇我其誰 2025XX集團年終總結(jié)暨頒獎盛典
- 車間生產(chǎn)現(xiàn)場5S管理基礎(chǔ)知識培訓(xùn)課件
- 浙江省寧波市慈溪市2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- GB/T 44625-2024動態(tài)響應(yīng)同步調(diào)相機技術(shù)要求
- 供貨保證措施以及應(yīng)急保障措施
- (高清版)JTGT 3610-2019 公路路基施工技術(shù)規(guī)范
評論
0/150
提交評論