四川省大邑縣晉原初中2023-2024學(xué)年中考數(shù)學(xué)仿真試卷含解析_第1頁
四川省大邑縣晉原初中2023-2024學(xué)年中考數(shù)學(xué)仿真試卷含解析_第2頁
四川省大邑縣晉原初中2023-2024學(xué)年中考數(shù)學(xué)仿真試卷含解析_第3頁
四川省大邑縣晉原初中2023-2024學(xué)年中考數(shù)學(xué)仿真試卷含解析_第4頁
四川省大邑縣晉原初中2023-2024學(xué)年中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省大邑縣晉原初中2023-2024學(xué)年中考數(shù)學(xué)仿真試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.函數(shù)中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣22.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學(xué)記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1053.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°4.如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個圖案中涂有陰影的小正方形個數(shù)為()A.8073 B.8072 C.8071 D.80705.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°6.如圖,在中,,的垂直平分線交于點,垂足為.如果,則的長為()A.2 B.3 C.4 D.67.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當(dāng)點G運(yùn)動時,設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)8.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當(dāng)y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>29.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.310.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若二次函數(shù)y=-x2-4x+k的最大值是9,則k=______.12.閱讀理解:引入新數(shù)i,新數(shù)i滿足分配律、結(jié)合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.13.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.14.已知線段AB=10cm,C為線段AB的黃金分割點(AC>BC),則BC=_____.15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A,(1)求點A的坐標(biāo);(2)設(shè)x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.18.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進(jìn)行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)19.(8分)先化簡,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.20.(8分)如圖①是一副創(chuàng)意卡通圓規(guī),圖②是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂.使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.(1)當(dāng)∠AOB=18°時,求所作圓的半徑(結(jié)果精確到0.01cm);(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度(結(jié)果精確到0.01cm,參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計算器).21.(8分)解不等式組:22.(10分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.23.(12分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.24.如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達(dá)式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運(yùn)動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運(yùn)動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運(yùn)動.設(shè)S=PQ2(cm2).①試求出S與運(yùn)動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當(dāng)S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標(biāo).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】要使有意義,所以x+1≥0且x+1≠0,

解得x>-1.

故選B.2、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】55000是5位整數(shù),小數(shù)點向左移動4位后所得的數(shù)即可滿足科學(xué)記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學(xué)記數(shù)法表示為5.5×104,故選B.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、D【解析】

根據(jù)鄰補(bǔ)角的定義求出與外角相鄰的內(nèi)角,再根據(jù)等腰三角形的性質(zhì)分情況解答.【詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內(nèi)角為180°?100°=80°,當(dāng)80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【點睛】本題考查了等腰三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì).4、A【解析】

觀察圖形可知第1個、第2個、第3個圖案中涂有陰影的小正方形的個數(shù),易歸納出第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1,由此求解即可.【詳解】解:觀察圖形的變化可知:第1個圖案中涂有陰影的小正方形個數(shù)為:5=4×1+1;第2個圖案中涂有陰影的小正方形個數(shù)為:9=4×2+1;第3個圖案中涂有陰影的小正方形個數(shù)為:13=4×3+1;…發(fā)現(xiàn)規(guī)律:第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1;∴第2018個圖案中涂有陰影的小正方形個數(shù)為:4n+1=4×2018+1=1.故選:A.【點睛】本題考查了圖形的變化規(guī)律,根據(jù)已有圖形確定其變化規(guī)律是解題的關(guān)鍵.5、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。6、C【解析】

先利用垂直平分線的性質(zhì)證明BE=CE=8,再在Rt△BED中利用30°角的性質(zhì)即可求解ED.【詳解】解:因為垂直平分,所以,在中,,則;故選:C.【點睛】本題主要考查了線段垂直平分線的性質(zhì)、30°直角三角形的性質(zhì),線段的垂直平分線上的點到線段的兩個端點的距離相等.7、C【解析】

延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應(yīng)角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識.8、D【解析】試題分析:觀察函數(shù)圖象得到當(dāng)﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結(jié)合思想的應(yīng)用.9、D【解析】

解:因為AB是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點睛】本題考查圓的基本性質(zhì);垂經(jīng)定理及解直角三角形,綜合性較強(qiáng),難度不大.10、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.二、填空題(本大題共6個小題,每小題3分,共18分)11、5【解析】y=?(x?2)2+4+k,∵二次函數(shù)y=?x2?4x+k的最大值是9,∴4+k=9,解得:k=5,故答案為:5.12、2【解析】

根據(jù)平方根的定義進(jìn)行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點睛】本題考查平方根以及實數(shù)的運(yùn)算,解題關(guān)鍵掌握平方根的定義.13、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.14、(15-55).【解析】試題解析:∵C為線段AB的黃金分割點(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點:黃金分割.15、1【解析】

根據(jù)向量的三角形法則表示出CB,再根據(jù)BC、AD的關(guān)系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵.16、(1)-2;(2)【解析】

(1)設(shè)點P的坐標(biāo)為(m,n),則點Q的坐標(biāo)為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.三、解答題(共8題,共72分)17、(1)A(4,3);(2)28.【解析】

(1)點A是正比例函數(shù)與一次函數(shù)圖像的交點坐標(biāo),把與聯(lián)立組成方程組,方程組的解就是點A的橫縱坐標(biāo);(2)過點A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長,再由BC=OA求得OB的長,用點P的橫坐標(biāo)a表示出點B、C的坐標(biāo),利用BC的長求得a值,根據(jù)即可求得△OBC的面積.【詳解】解:(1)由題意得:,解得,∴點A的坐標(biāo)為(4,3).(2)過點A作x軸的垂線,垂足為D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.18、觀景亭D到南濱河路AC的距離約為248米.【解析】

過點D作DE⊥AC,垂足為E,設(shè)BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設(shè)BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.19、【解析】

對待求式的分子、分母進(jìn)行因式分解,并將除法化為乘法可得×-1,通過約分即可得到化簡結(jié)果;先利用特殊角的三角函數(shù)值求出a的值,再將a、b的值代入化簡結(jié)果中計算即可解答本題.【詳解】原式=×-1=-1==,當(dāng)a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1時,原式=.【點睛】本題考查了分式的化簡求值,解題的關(guān)鍵是熟練的掌握分式的化簡求值運(yùn)算法則.20、(1)3.13cm(2)鉛筆芯折斷部分的長度約是0.98cm【解析】試題分析:(1)根據(jù)題意作輔助線OC⊥AB于點C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應(yīng)的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.試題解析:(1)作OC⊥AB于點C,如右圖2所示,由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB?sin9°≈2×10×0.1564≈3.13cm,即所作圓的半徑約為3.13cm;(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,∵保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,∴折斷的部分為BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB?sin9°≈2×3.13×0.1564≈0.98cm,即鉛筆芯折斷部分的長度是0.98cm.考點:解直角三角形的應(yīng)用;探究型.21、﹣9<x<1.【解析】

先求每一個不等式的解集,然后找出它們的公共部分,即可得出答案.【詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【點睛】此題考查了解一元一次不等式組,用到的知識點是解一元一次不等式組的步驟,關(guān)鍵是找出兩個不等式解集的公共部分.22、(1)45°(2),理由見解析【解析】

(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.23、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標(biāo),即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標(biāo)為m,點M在AC上,∴M點的坐標(biāo)為(m,).∵點P的橫坐標(biāo)為m,點P在拋物線上,∴點P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.24、(1)拋物線的解析式為:y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論