版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙東北聯(lián)盟高一下數(shù)學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若關于的不等式的解集為,則A. B.C. D.2.已知為第二象限角,則所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限3.在等差數(shù)列中,,則等于()A.2 B.18 C.4 D.94.直線傾斜角的范圍是()A.(0,] B.[0,] C.[0,π) D.[0,π]5.已知點,直線方程為,且直線與線段相交,求直線的斜率k的取值范圍為()A.或 B.或C. D.6.若且,則()A. B. C. D.7.以點和為直徑兩端點的圓的方程是()A. B.C. D.8.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.9.若一個正四棱錐的側棱和底面邊長相等,則該正四棱錐的側棱和底面所成的角為()A.30° B.45° C.60° D.90°10.已知,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正實數(shù),滿足,則的最小值是________.12.若存在實數(shù),使不等式成立,則的取值范圍是_______________.13.在長方體中,,,,如圖,建立空間直角坐標系,則該長方體的中心的坐標為_________.14.若集合,,則集合________.15.函數(shù)在上是減函數(shù),則的取值范圍是________.16.若A(-2,3),B(3,-2),C(4,m)三點共線則m的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)化簡;(2)若是第二象限角,且,求的值.18.已知.(1)求的值;(2)求的值.19.為保障高考的公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1km內(nèi)不能收到手機信號,檢查員抽查某市一考點,在考點正西約km/h的的B處有一條北偏東60°方向的公路,在此處檢查員用手機接通電話,以每小時12千米的速度沿公路行駛,最多需要多少時間,檢查員開始收不到信號,并至少持續(xù)多長時間該考點才算合格?20.近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.21.已知的三個內(nèi)角的對邊分別是,且.(1)求角的大??;(2)若的面積為,求的周長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由題意可得,且,3為方程的兩根,運用韋達定理可得,,的關系,可得的解析式,計算,(1),(4),比較可得所求大小關系.【詳解】關于的不等式的解集為,可得,且,3為方程的兩根,可得,,即,,,,可得,(1),(4),可得(4)(1),故選.【點睛】本題主要考查二次函數(shù)的圖象和性質、函數(shù)與方程的思想,以及韋達定理的運用。2、A【解析】
用不等式表示第二象限角,再利用不等式的性質求出滿足的不等式,從而確定角的終邊在的象限.【詳解】由已知為第二象限角,則則當時,此時在第一象限.當時,,此時在第三象限.故選:A【點睛】本題考查象限角的表示方法,不等式性質的應用,通過角滿足的不等式,判斷角的終邊所在的象限.3、D【解析】
利用等差數(shù)列性質得到,,計算得到答案.【詳解】等差數(shù)列中,故選:D【點睛】本題考查了等差數(shù)列的計算,利用性質可以簡化運算,是解題的關鍵.4、C【解析】試題分析:根據(jù)直線傾斜角的定義判斷即可.解:直線傾斜角的范圍是:[0,π),故選C.5、A【解析】
先求出線段的方程,得出,在直線的方程中得到,將代入的表達式,利用不等式的性質求出的取值范圍.【詳解】易求得線段的方程為,得,由直線的方程得,當時,,此時,;當時,,此時,.因此,實數(shù)的取值范圍是或,故選A.【點睛】本題考查斜率取值范圍的計算,可以利用數(shù)形結合思想,觀察傾斜角的變化得出斜率的取值范圍,也可以利用參變量分離,得出斜率的表達式,利用不等式的性質得出斜率的取值范圍,考查計算能力,屬于中等題.6、A【解析】
利用同角的三角函數(shù)關系求得,再根據(jù)正弦的二倍角公式求解即可【詳解】由題,因為,,所以或,因為,所以,則,所以,故選:A【點睛】本題考查正弦的二倍角公式的應用,考查同角的三角函數(shù)關系的應用,考查已知三角函數(shù)值求三角函數(shù)值問題7、A【解析】
可根據(jù)已知點直接求圓心和半徑.【詳解】點和的中點是圓心,圓心坐標是,點和間的距離是直徑,,即,圓的方程是.故選A.【點睛】本題考查了圓的標準方程的求法,屬于基礎題型.8、D【解析】
過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).9、B【解析】
正四棱錐,連接底面對角線,在中,為側棱與地面所成角,通過邊的關系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學生的計算能力和空間想象力.10、B【解析】
利用誘導公式求得tanα,再利用同角三角函數(shù)的基本關系求得要求式子的值.【詳解】∵已知tanα,∴tanα,則,故選B.【點睛】本題主要考查應用誘導公式、同角三角函數(shù)的基本關系的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將配湊成,由此化簡的表達式,并利用基本不等式求得最小值.【詳解】由得,所以.當且僅當,即時等號成立.故填:.【點睛】本小題主要考查利用基本不等式求和式的最小值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.12、;【解析】
不等式轉化為,由于存在,使不等式成立,因此只要求得的最小值即可.【詳解】由題意存在,使得不等式成立,當時,,其最小值為,∴.故答案為.【點睛】本題考查不等式能成立問題,解題關鍵是把問題轉化為求函數(shù)的最值.不等式能成立與不等式恒成立問題的轉化區(qū)別:在定義域上,不等式恒成立,則,不等式能成立,則,不等式恒成立,則,不等式能成立,則.轉化時要注意是求最大值還是求最小值.13、【解析】
先求出點B的坐標,再求出M的坐標.【詳解】由題得B(4,6,0),,因為M點是中點,所以點M坐標為.故答案為【點睛】本題主要考查空間坐標的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.14、【解析】由題意,得,,則.15、【解析】
根據(jù)二次函數(shù)的圖象與性質,即可求得實數(shù)的取值范圍,得到答案.【詳解】由題意,函數(shù)表示開口向下,且對稱軸方程為的拋物線,當函數(shù)在上是減函數(shù)時,則滿足,解得,所以實數(shù)的取值范圍.故答案為:.【點睛】本題主要考查了二次函數(shù)的圖象與性質的應用,其中解答中熟記二次函數(shù)的圖象與性質,列出相應的不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、-3【解析】
根據(jù)三點共線與斜率的關系即可得出.【詳解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三點共線,∴﹣1=-3-m6,解得m=故答案為-3.【點睛】本題考查了三點共線與斜率的關系,考查了推理能力與計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用三角函數(shù)的誘導公式即可求解.(2)利用誘導公式可得,再利用同角三角函數(shù)的基本關系即可求解.【詳解】(1)由題意得.(2)∵,∴.又為第二象限角,∴,∴.【點睛】本題考查了三角函數(shù)的誘導公式以及同角三角函數(shù)的基本關系,屬于基礎題.18、(1);(2).【解析】試題分析:(1)要求的值,根據(jù)兩角和的正弦公式,可知還要求得,由于已知,所以,利用同角關系可得;(2)要求,由兩角差的余弦公式我們知要先求得,而這由二倍角公式結合(1)可很容易得到.本題應該是三角函數(shù)最基本的題型,只要應用公式,不需要作三角函數(shù)問題中常見的“角”的變換,“函數(shù)名稱”的變換等技巧,可以算得上是容易題,當然要正確地解題,也必須牢記公式,及計算正確.試題解析:(1)由題意,所以.(2)由(1)得,,所以.【考點】三角函數(shù)的基本關系式,二倍角公式,兩角和與差的正弦、余弦公式.19、答案見解析.【解析】
由題意利用正弦定理首先求得的大小,然后確定檢查員檢查合格的方法即可.【詳解】檢查開始處為,設公路上兩點到考點的距離均為1km.在中,,由正弦定理,得,,.在中,,為等邊三角形,.在段需要5min,在段需要5min.則最多需要5min,檢查員開始收不到信號,并至少持續(xù)5min.【點睛】本題主要考查正弦定理的應用,方程的數(shù)學思想等知識,意在考查學生的轉化能力和計算求解能力.20、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】
(I)根據(jù)頻率之和為列方程,結合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點作為中位數(shù).(III)先計算出從,中分別抽取人和人,再利用列舉法和古典概型概率計算公式,計算出所求的概率.【詳解】解:(I)依題意得,所以,又,所以.(Ⅱ)平均數(shù)為中位數(shù)為眾數(shù)為(Ш)依題意,知分數(shù)在的市民抽取了2人,記為,分數(shù)在的市民抽取了6人,記為1,2,3,4,5,6,所以從這8人中隨機抽取2人所有的情況為:,共28種,其中滿足條件的為,共13種,設“至少有1人的分數(shù)在”的事件為,則【點睛】本小題主要考查求解頻率分布直方圖上的未知數(shù),考查利用頻率分布直方圖估計平均數(shù)、中位數(shù)和眾數(shù)的方法,考查利用古典概型求概率.屬于中檔題.21、(1);(2)【解析】
(1)通過正弦定理得,進而求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 威海海洋職業(yè)學院《教具設計》2023-2024學年第一學期期末試卷
- 汽車金融分期付款合同范例
- 合伙養(yǎng)豬合伙合同范例
- 包干律師服務合同范例
- 秸稈材料采購合同范例
- 店鋪轉讓合同范例版
- 外墻抹灰勞務合同范例
- 2025高壓配電工程安裝施工合同
- 校園規(guī)劃設計合同范例
- 中介擔保合同范例
- 系統(tǒng)集成售前技術年終總結
- 小區(qū)智能化安防項目設計總體說明
- 法律法規(guī)知識測試題庫(共200題)
- 教科版科學四年級上冊第三單元核心素養(yǎng)目標教案(含反思)
- 抗菌藥物臨床應用評估與持續(xù)改進制度
- 《網(wǎng)絡營銷》試題及答案2
- DB34∕T 4324-2022 水泥土攪拌樁地基加固施工技術規(guī)程
- 2024年山東省青島高新區(qū)管委會選聘193人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 2024-2025學年語文六年級上冊統(tǒng)編版期末綜合測試卷
- 醫(yī)學英語學習通超星期末考試答案章節(jié)答案2024年
- 數(shù)控機床發(fā)展歷史
評論
0/150
提交評論