版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市奉賢區(qū)2023-2024學年高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.2.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位3.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.44.直線x﹣y+2=0與圓x2+(y﹣1)2=4的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定5.己知的周長為,內(nèi)切圓的半徑為,,則的值為()A. B. C. D.6.設(shè)直線l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1與A.-16 B.0或7.若,且,則的值是()A. B. C. D.8.函數(shù)的對稱中心是()A. B. C. D.9.函數(shù)的圖象如圖所示,則y的表達式為()A. B.C. D.10.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.24二、填空題:本大題共6小題,每小題5分,共30分。11.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).12.設(shè)為等差數(shù)列的前n項和,,則________.13.若八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的方差是______14.在銳角△中,角所對應(yīng)的邊分別為,若,則角等于________.15.已知1,,,,4成等比數(shù)列,則______.16.向邊長為的正方形內(nèi)隨機投粒豆子,其中粒豆子落在到正方形的頂點的距離不大于的區(qū)域內(nèi)(圖中陰影區(qū)域),由此可估計的近似值為______.(保留四位有效數(shù)字)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.從含有兩件正品和一件次品的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求:(1)一切可能的結(jié)果組成的基本事件空間.(2)取出的兩件產(chǎn)品中恰有一件次品的概率18.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.19.在四棱錐中,底面是平行四邊形,平面,點,分別為,的中點,且,,.(1)證明:平面;(2)求直線與平面所成角的余弦值.20.如圖,是正方形,是正方形的中心,底面是的中點.(1)求證:平面;(2)若,求三棱錐的體積.21.已知的頂點,邊上的高所在的直線方程為,為的中點,且所在的直線方程為.(1)求頂點的坐標;(2)求過點且在軸、軸上的截距相等的直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選2、D【解析】
根據(jù)三角函數(shù)圖象的平移變換可直接得到圖象變換的過程.【詳解】因為,所以向右平移個單位即可得到的圖象.故選:D.【點睛】本題考查三角函數(shù)圖象的平移變換,難度較易.注意左右平移時對應(yīng)的規(guī)律:左加右減.3、B【解析】
將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎(chǔ)題.4、A【解析】
求得圓心到直線的距離,然后和圓的半徑比較大小,從而判定兩者位置關(guān)系,得到答案.【詳解】由題意,可得圓心到直線的距離為,所以直線與圓相交.故選:A.【點睛】本題主要考查了直線與圓的位置關(guān)系判定,其中解答中熟記直線與圓的位置關(guān)系的判定方法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù)的周長為,內(nèi)切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡得到求解.【詳解】因為的周長為,內(nèi)切圓的半徑為,所以,又因為,所以.由余弦定理得:,,所以,所以,即,因為A為內(nèi)角,所以,所以.故選:C【點睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.6、B【解析】
通過兩條直線平行的關(guān)系,可建立關(guān)于a的方程,解方程求得結(jié)果。【詳解】l1//解得:a=0或-本題正確選項:B【點睛】本題考察直線位置關(guān)系問題。關(guān)鍵是通過兩直線平行,得到:A17、A【解析】
對兩邊平方,可得,進而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因為,所以,所以,所以,又,所以所以.故選:A.【點睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.8、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點對稱,而函數(shù)的圖象可由的圖象向右平移一個單位,向下平移兩個單位得到,所以函數(shù)的圖象關(guān)于點對稱,故選C.9、B【解析】
根據(jù)圖像最大值和最小值可得,根據(jù)最大值和最小值的所對應(yīng)的的值,可得周期,然后由,得到,代入點,結(jié)合的范圍,得到答案.【詳解】根據(jù)圖像可得,,即,根據(jù),得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故選B.【點睛】本題考查根據(jù)函數(shù)圖像求正弦型函數(shù)的解析式,屬于簡單題.10、D【解析】設(shè)放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】
先確定船的方向,再求出船的速度和時間.【詳解】因為行程最短,所以船應(yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【點睛】本題主要考查平面向量的應(yīng)用,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、54.【解析】
設(shè)首項為,公差為,利用等差數(shù)列的前n項和公式列出方程組,解方程求解即可.【詳解】設(shè)首項為,公差為,由題意,可得解得所以.【點睛】本題主要考查了等差數(shù)列的前n項和公式,解方程的思想,屬于中檔題.13、1.1【解析】
先求出這組數(shù)據(jù)的平均數(shù),由此能求出這組數(shù)據(jù)的方差.【詳解】八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的平均數(shù)為:(87+88+90+91+92+93+93+94)=91,∴這組數(shù)據(jù)的方差為:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案為1.1.【點睛】本題考查方差的求法,考查平均數(shù)、方差的性質(zhì)等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.14、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應(yīng)用.【方法點晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.15、2【解析】
因為1,,,,4成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì),可得,再利用,確定取值.【詳解】因為1,,,,4成等比數(shù)列,所以,所以或,又因為,所以.故答案為:2【點睛】本題主要考查等比數(shù)列的性質(zhì),還考查運算求解的能力,屬于基礎(chǔ)題.16、3.1【解析】
根據(jù)已知條件求出滿足條件的正方形的面積,及到頂點的距離不大于1的區(qū)域(圖中陰影區(qū)域)的面積比值等于頻率即可求出答案.【詳解】依題意得,正方形的面積,陰影部分的面積,故落在到正方形的頂點的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的概率,隨機投10000粒豆子,其中1968粒豆子落在到正方形的頂點的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的頻率為:,即有:,解得:,故答案為3.1.【點睛】幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件的基本事件對應(yīng)的“幾何度量”(A),再求出總的基本事件對應(yīng)的“幾何度量”,最后根據(jù)求解.利用頻率約等于概率,即可求解。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)和;(2)【解析】
(1)注意先后順序以及是不放回的抽?。唬?)在所有可能的事件中尋找符合要求的事件,然后利用古典概型概率計算公式求解即可.【詳解】(1)每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個,即和其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)品(2)用A表示“取出的兩種中,恰好有一件次品”這一事件,則∴事件A由4個基本事件組成,因而,=.【點睛】本題考查掛古典概型的基本概率計算,難度較易.對于放回或不放回的問題,一定要注意區(qū)分其中的不同.18、(1);(2)【解析】
(1)直接利用任意角的三角函數(shù)的定義,求得的值.(2)利用誘導(dǎo)公式化簡所給的式子,再把代入,求得結(jié)果.【詳解】解:(1)因為角的終邊經(jīng)過點由三角函數(shù)的定義可知.(2)由(1)知,.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,屬于基礎(chǔ)題.19、(1)見解析(2)【解析】
(1)取中點,連接,,構(gòu)造平行四邊形,由線線平行得到線面平行;(2)根據(jù)線面角的定義作出線面角,在直角三角形中求出數(shù)值.【詳解】(1)證明:取中點,連接,,∵為中點,∴,且,又為中點,底面為平行四邊形,∴,,∴,,即為平行四邊形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,過作,則平面,連結(jié),則為直線與平面所成的夾角,由,,,得,由,得,在中,,得,在中,,∴,即直線與平面所成角的余弦值為.【點睛】這個題目考查了空間中的直線和平面的位置關(guān)系.求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;還可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可.20、(1)證明見解析;(2).【解析】
(1)由平面得出,由底面為正方形得出,再利用直線與平面垂直的判定定理可證明平面;(2)由勾股定理計算出,由點為線段的中點得知點到平面的距離等于,并計算出的面積,最后利用錐體的體積公式可計算出三棱錐的體積.【詳解】(1)平面,平面,,又為正方形,,又平面,平面,,平面;(2)由題意知:,又,,,點到面的距離為,.【點睛】本題考查直線與平面垂直的判定,考查三棱錐體積的計算,在計算三棱錐的體積時,充分利用題中的線面垂直關(guān)系和平面與平面垂直的關(guān)系,尋找合適的底面和高來進行計算,考查計算能力與推理能力,屬于中等題.21、(1)(2)或【解析】
(1)首先確定直線的斜率,從而得到直線的方程;因為點是直線與的交點,聯(lián)立兩條直線可求得點坐標;(2)設(shè),利用中點坐標公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 港口集裝箱裝卸區(qū)施工合同
- 鐵路橋梁外墻保溫施工合同范本
- 2024年度農(nóng)田水利工程進度與質(zhì)量監(jiān)控合同3篇
- 礦井安全監(jiān)測系統(tǒng)拉管施工合同
- 2024年度汽車貸款貸后信用評級及動態(tài)調(diào)整合同3篇
- 建筑隔音勞務(wù)分包合同模板
- 煙草制品行業(yè)傷害處理規(guī)范
- 校園防恐安全協(xié)議
- 2025汽車購銷合同協(xié)議
- 廣西壯族自治區(qū)河池市十校協(xié)作體2024-2025學年高一上學期第二次聯(lián)考數(shù)學試題(解析版)
- 五年級上冊英語人教PEP版課件書面表達
- 中國常用漢字大全
- PPT:增進民生福祉提高人民生活品質(zhì)
- 開具紅字發(fā)票情況說明
- 2022 年奧賽希望杯二年級培訓(xùn) 100題含答案
- 水利工程建設(shè)匯報材料(通用3篇)
- 10篇罪犯矯治個案
- 中央企業(yè)商業(yè)秘密安全保護技術(shù)指引2015版
- 艾草種植基地建設(shè)項目可行性研究報告
- 留守兒童一生一檔、聯(lián)系卡
- GB/T 2007.2-1987散裝礦產(chǎn)品取樣、制樣通則手工制樣方法
評論
0/150
提交評論