版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆吉林省白城市洮南十中高一下數(shù)學(xué)期末綜合測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.化簡(jiǎn):()A. B. C. D.2.在平面直角坐標(biāo)系中,已知四邊形是平行四邊形,,,則()A. B. C. D.3.設(shè)等差數(shù)列的前項(xiàng)和為,,,則()A. B. C. D.4.在中,,是的內(nèi)心,若,其中,動(dòng)點(diǎn)的軌跡所覆蓋的面積為(
)A. B. C. D.5.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》第六章“均輸”中有這樣一個(gè)問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”(注:“均輸”即按比例分配,此處是指五人所得成等差數(shù)列;“錢”是古代的一種計(jì)量單位),則分得最少的一個(gè)得到()A.錢 B.錢 C.錢 D.1錢6.已知,,,是球球面上的四個(gè)點(diǎn),平面,,,則該球的表面積為()A. B. C. D.7.為等差數(shù)列的前項(xiàng)和,且,.記,其中表示不超過的最大整數(shù),如,.?dāng)?shù)列的前項(xiàng)和為()A. B. C. D.8.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.9.如圖,兩個(gè)正方形和所在平面互相垂直,設(shè)、分別是和的中點(diǎn),那么:①;②平面;③;④、異面.其中不正確的序號(hào)是()A.① B.② C.③ D.④10.終邊在軸上的角的集合()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.我國(guó)南宋時(shí)期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中獨(dú)立提出了一種求三角形面積的方法——“三斜求積術(shù)”,即的,其中分別為內(nèi)角的對(duì)邊.若,且則的面積的最大值為____.12.若是函數(shù)的兩個(gè)不同的零點(diǎn),且這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值等于________.13.已知直線與圓相交于兩點(diǎn),則______.14.三棱錐中,分別為的中點(diǎn),記三棱錐的體積為,的體積為,則____________15.設(shè)變量滿足條件,則的最小值為___________16.在中,角所對(duì)的邊為,若,且的外接圓半徑為,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知點(diǎn),,動(dòng)點(diǎn)滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標(biāo)原點(diǎn)O的直線l交C于P、Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為H.連結(jié)QH并延長(zhǎng)交C于點(diǎn)R.(i)設(shè)O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時(shí)直線l的方程.18.如圖,四棱錐中,底面,分別為的中點(diǎn),.(1)證明:平面平面(2)求三棱錐的體積.19.已知,,,求:的值.20.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)為數(shù)列的前n項(xiàng)和,,求數(shù)列的前n項(xiàng)和.21.如圖,在四棱錐中,平面平面,四邊形為矩形,,點(diǎn),分別是,的中點(diǎn).求證:(1)直線∥平面;(2)平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
.故選A.【點(diǎn)睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運(yùn)算.2、D【解析】因?yàn)樗倪呅问瞧叫兴倪呅?,所以,所以,故選D.考點(diǎn):1、平面向量的加法運(yùn)算;2、平面向量數(shù)量積的坐標(biāo)運(yùn)算.3、A【解析】
利用等差數(shù)列的基本量解決問題.【詳解】解:設(shè)等差數(shù)列的公差為,首項(xiàng)為,因?yàn)?,,故有,解得,,故選A.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與前項(xiàng)和公式,解決問題的關(guān)鍵是熟練運(yùn)用基本量法.4、A【解析】
畫出圖形,由已知條件便知P點(diǎn)在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長(zhǎng)為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點(diǎn)在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動(dòng)點(diǎn)P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動(dòng)點(diǎn)P的軌跡所覆蓋圖形的面積為.故答案為:A.【點(diǎn)睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點(diǎn)所覆蓋的區(qū)域.5、B【解析】
設(shè)所成等差數(shù)列的首項(xiàng)為,公差為,利用等差數(shù)列前項(xiàng)和公式及通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,進(jìn)而得出答案.【詳解】由題意五人所分錢成等差數(shù)列,設(shè)得錢最多的為,則公差.所以,則.又,即則,分得最少的一個(gè)得到.故選:B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.6、B【解析】
根據(jù)截面法,作出球心O與外接圓圓心所在截面,利用平行四邊形和勾股定理可求得球半徑,從而得到結(jié)果.【詳解】如圖,的外接圓圓心E為BC的中點(diǎn),設(shè)球心為O,連接OE,OP,OA,D為PA的中點(diǎn),連接OD.根據(jù)直角三角形的性質(zhì)可得,且平面,則//,由為等腰三角形可得,又,所以//,則四邊形ODAE是矩形,所以=,而,中,根據(jù)勾股定理可得,所以該球的表面積為.所以本題答案為B.【點(diǎn)睛】本題考查求三棱錐外接球的表面積問題,幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時(shí)需把球的半徑放置在可解的幾何圖形中,如果球心的位置不易確定,則可以把該幾何體補(bǔ)成規(guī)則的幾何體,便于球心位置和球的半徑的確定.7、D【解析】
利用等差數(shù)列的通項(xiàng)公式與求和公式可得,再利用,可得,,.即可得出.【詳解】解:為等差數(shù)列的前項(xiàng)和,且,,.可得,則公差.,,則,,,.?dāng)?shù)列的前項(xiàng)和為:.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、對(duì)數(shù)運(yùn)算性質(zhì)、取整函數(shù),考查了推理能力與計(jì)算能力,屬于中檔題.8、A【解析】
先求出所有的單調(diào)遞增區(qū)間,然后與取交集即可.【詳解】因?yàn)榱畹茫核缘膯握{(diào)遞增區(qū)間是因?yàn)?,所以即函?shù)的單調(diào)遞增區(qū)間是故選:A【點(diǎn)睛】求形如的單調(diào)區(qū)間時(shí),一般利用復(fù)合函數(shù)的單調(diào)性原理“同增異減”來求出此函數(shù)的單調(diào)區(qū)間,當(dāng)時(shí),需要用誘導(dǎo)公式將函數(shù)轉(zhuǎn)化為.9、D【解析】
取的中點(diǎn),連接,,連接,,由線面垂直的判定和性質(zhì)可判斷①;由三角形的中位線定理,以及線面平行的判定定理可判斷②③④.【詳解】解:取的中點(diǎn),連接,,連接,,正方形和所在平面互相垂直,、分別是和的中點(diǎn),可得,,平面,可得,故①正確;由為的中位線,可得,且平面,可得平面,故②③正確,④錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查空間線線和線面的位置關(guān)系,考查轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎(chǔ)題.10、D【解析】
根據(jù)軸線角的定義即可求解.【詳解】A項(xiàng),是終邊在軸正半軸的角的集合;B項(xiàng),是終邊在軸的角的集合;C項(xiàng),是終邊在軸正半軸的角的集合;D項(xiàng),是終邊在軸的角的集合;綜上,D正確.故選:D【點(diǎn)睛】本題主要考查了軸線角的判斷,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知利用正弦定理可求,代入“三斜求積”公式即可求得答案.【詳解】因?yàn)椋哉砜傻?,由正弦定理得因?yàn)?,所以所以?dāng)時(shí),的面積的最大值為【點(diǎn)睛】本題用到的知識(shí)點(diǎn)有同角三角函數(shù)的基本關(guān)系式,兩角和的正弦公式,正弦定理等,考查學(xué)生分析問題的能力和計(jì)算整理能力.12、1【解析】
由一元二次方程根與系數(shù)的關(guān)系得到a+b=p,ab=q,再由a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列列關(guān)于a,b的方程組,求得a,b后得答案.【詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點(diǎn)評(píng):本題考查了一元二次方程根與系數(shù)的關(guān)系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)題.【思路點(diǎn)睛】解本題首先要能根據(jù)韋達(dá)定理判斷出a,b均為正值,當(dāng)他們與-2成等差數(shù)列時(shí),共有6種可能,當(dāng)-2為等差中項(xiàng)時(shí),因?yàn)椋圆豢扇?,則-2只能作為首項(xiàng)或者末項(xiàng),這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項(xiàng)公式可知-2必為等比中項(xiàng),兩數(shù)列搞清楚以后,便可列方程組求解p,q.13、【解析】
首先求出圓的圓心坐標(biāo)和半徑,計(jì)算圓心到直線的距離,再計(jì)算弦長(zhǎng)即可.【詳解】圓,,圓心,半徑.圓心到直線的距離..故答案為:【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系中的弦長(zhǎng)問題,熟練掌握弦長(zhǎng)公式為解題的關(guān)鍵,屬于簡(jiǎn)單題.14、【解析】
由已知設(shè)點(diǎn)到平面距離為,則點(diǎn)到平面距離為,所以,考點(diǎn):幾何體的體積.15、-1【解析】
根據(jù)線性規(guī)劃的基本方法求解即可.【詳解】畫出可行域有:因?yàn)?根據(jù)當(dāng)直線縱截距最大時(shí),取得最小值.由圖易得在處取得最小值.故答案為:【點(diǎn)睛】本題主要考查了線性規(guī)劃的基本運(yùn)用,屬于基礎(chǔ)題.16、或.【解析】
利用正弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由正弦定理可得,所以,,,或,故答案為或.【點(diǎn)睛】本題考查正弦定理的應(yīng)用,在利用正弦值求角時(shí),除了找出銳角還要注意相應(yīng)的補(bǔ)角是否滿足題意,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解析】
(1)根據(jù)題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點(diǎn)坐標(biāo),表示出QH直線方程,采用點(diǎn)到直線距離公式求解;利用圓的幾何關(guān)系,表示出三角形的底和高,再結(jié)合函數(shù)最值問題進(jìn)行求解【詳解】(1)由及兩點(diǎn)距離公式,有,化簡(jiǎn)整理得,.所以曲線C的方程為;(2)(i)設(shè)直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當(dāng)時(shí).,所以,(ii)過O作于D,則D為QR中點(diǎn),且由(i)知,,,又由,故的面積,由,有,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,且此時(shí)由(i)有,即.綜上,的面積最大值為的面積最大值為,且當(dāng)面積最大時(shí)直線的方程為.【點(diǎn)睛】直線與圓的綜合類題型常采用點(diǎn)到直線距離公式、圓內(nèi)構(gòu)造的直角三角形,將代數(shù)問題與幾何問題進(jìn)行有效結(jié)合,可大大降低解題難度.18、(1)見證明;(2)【解析】
(1)先證明面,再證明平面平面;(2)由求解.【詳解】(1)證明:由已知為的中點(diǎn),且,所以,因?yàn)?,所以,又因?yàn)椋运倪呅螢槠叫兴倪呅?,所以,又因?yàn)槊?,所以平?在△中,因?yàn)?分別為,的中點(diǎn),所以,因?yàn)?,,所以面,因?yàn)?,所以平面平面?)由已知為中點(diǎn),又因?yàn)?,所以,因?yàn)?,,,所?【點(diǎn)睛】本題主要考查空間幾何元素平行關(guān)系的證明,考查幾何體體積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.19、【解析】
求出和的取值范圍,利用同角三角函數(shù)的基本關(guān)系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點(diǎn)睛】本題考查利用兩角差的余弦公式求值,解題的關(guān)鍵就是利用已知角來表示所求角,考查計(jì)算能力,屬于中等題.20、(1),n∈N+;(2)【解析】
(1)設(shè)公比為q,q>0,運(yùn)用等比數(shù)列的通項(xiàng)公式,解方程即可得到所求;(2),再由數(shù)列的裂項(xiàng)相消求和,計(jì)算可得所求和.【詳解】(1)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,設(shè)公比為q,q>0,,.即,,解得,可得,n∈N+;(2),前n項(xiàng)和,由(1)可得a1=2,,即有.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)和求和,數(shù)列求和的常用方法有:分組求和,錯(cuò)位相減求和,倒序相加求和等,本題解題關(guān)鍵是裂項(xiàng)的形式,本題屬于中等題.21、(1)見解析(2)見解析【解析】
(1)取中點(diǎn),連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證得,再利用面面垂直的判定定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車銷售工作計(jì)劃書范例(24篇)
- 建筑設(shè)計(jì)服務(wù)合同管理綱要
- 教師科研成果轉(zhuǎn)化合同樣本
- 太陽(yáng)能公司美縫施工合同
- 信息技術(shù)工程師聘用合同條款
- 攀巖館租賃合同
- 體育館泵房施工協(xié)議
- 上海生物醫(yī)藥區(qū)二手房買賣協(xié)議
- 2024年小產(chǎn)權(quán)房交易合同模板
- 家具廠光伏發(fā)電項(xiàng)目施工合同
- 山西省太原市2024-2025學(xué)年高三上學(xué)期期中物理試卷(含答案)
- 酒店崗位招聘面試題與參考回答2025年
- (統(tǒng)編2024版)道德與法治七上10.1愛護(hù)身體 課件
- GB/T 30391-2024花椒
- 供電線路維護(hù)合同
- 胸部術(shù)后護(hù)理科普
- 鞋子工廠供貨合同模板
- 2024碼頭租賃合同范本
- 木材采運(yùn)智能決策支持系統(tǒng)
- 快速反應(yīng)流程
- 法院訴訟保全銀行保函格式
評(píng)論
0/150
提交評(píng)論