版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省淮北市2021-2022學(xué)年中考押題數(shù)學(xué)預(yù)測卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°2.一條數(shù)學(xué)信息在一周內(nèi)被轉(zhuǎn)發(fā)了2180000次,將數(shù)據(jù)2180000用科學(xué)記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.在方格紙中,選擇標(biāo)有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④4.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關(guān)系是()A.M>N B.M=N C.M<N D.不能確定5.一、單選題小明和小張兩人練習(xí)電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設(shè)小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.6.?dāng)?shù)軸上分別有A、B、C三個點,對應(yīng)的實數(shù)分別為a、b、c且滿足,|a|>|c|,b?c<0,則原點的位置()A.點A的左側(cè) B.點A點B之間C.點B點C之間 D.點C的右側(cè)7.在平面直角坐標(biāo)系中,將點P(4,﹣3)繞原點旋轉(zhuǎn)90°得到P1,則P1的坐標(biāo)為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)8.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.9.下列四個幾何體,正視圖與其它三個不同的幾何體是()A. B.C. D.10.在下列四個標(biāo)志中,既是中心對稱又是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知整數(shù)k<5,若△ABC的邊長均滿足關(guān)于x的方程,則△ABC的周長是.12.已知a+b=4,a-b=3,則a2-b2=____________.13.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當(dāng)兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.14.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________15.“若實數(shù)a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.16.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當(dāng)△DEB是直角三角形時,DF的長為_____.三、解答題(共8題,共72分)17.(8分)某調(diào)查小組采用簡單隨機抽樣方法,對某市部分中小學(xué)生一天中陽光體育運動時間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:(1)該調(diào)查小組抽取的樣本容量是多少?(2)求樣本學(xué)生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;(3)請估計該市中小學(xué)生一天中陽光體育運動的平均時間.18.(8分)某學(xué)校為了解學(xué)生的課余活動情況,抽樣調(diào)查了部分學(xué)生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如圖:(1)在這次研究中,一共調(diào)查了學(xué)生,并請補全折線統(tǒng)計圖;(2)該校共有2200名學(xué)生,估計該校愛好閱讀和愛好體育的學(xué)生一共有多少人?19.(8分)如圖,已知在中,,是的平分線.(1)作一個使它經(jīng)過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關(guān)系,并說明理由.20.(8分)如圖①,二次函數(shù)的拋物線的頂點坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最???若存在,求出這個最小值及點G、H的坐標(biāo);若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.21.(8分)有一科技小組進(jìn)行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達(dá)C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.22.(10分)在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥EC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.如圖1,求證:∠ANE=∠DCE;如圖2,當(dāng)點N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.23.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標(biāo);若不能,請說明理由.24.隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學(xué)生,最喜歡用電話溝通的所對應(yīng)扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調(diào)查結(jié)果估計1200名學(xué)生中最喜歡用QQ進(jìn)行溝通的學(xué)生有多少名?(4)甲、乙兩名同學(xué)從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學(xué)恰好選中同一種溝通方式的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得∠A=50°,再根據(jù)平行線的性質(zhì)可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內(nèi)角和定理即可求得∠DBC的度數(shù).【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點睛】本題考查了等腰三角形的性質(zhì),圓周角定理,三角形內(nèi)角和定理等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.2、A【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】2180000的小數(shù)點向左移動6位得到2.18,所以2180000用科學(xué)記數(shù)法表示為2.18×106,故選A.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當(dāng)涂黑②時,所形成的圖形關(guān)于點A中心對稱。故選B。4、A【解析】
若比較M,N的大小關(guān)系,只需計算M-N的值即可.【詳解】解:∵M(jìn)=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.5、C【解析】
解:因為設(shè)小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關(guān)系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應(yīng)用題,找準(zhǔn)題目中的等量關(guān)系,難度不大.6、C【解析】分析:根據(jù)題中所給條件結(jié)合A、B、C三點的相對位置進(jìn)行分析判斷即可.詳解:A選項中,若原點在點A的左側(cè),則,這與已知不符,故不能選A;B選項中,若原點在A、B之間,則b>0,c>0,這與b·c<0不符,故不能選B;C選項中,若原點在B、C之間,則且b·c<0,與已知條件一致,故可以選C;D選項中,若原點在點C右側(cè),則b<0,c<0,這與b·c<0不符,故不能選D.故選C.點睛:理解“數(shù)軸上原點右邊的點表示的數(shù)是正數(shù),原點表示的是0,原點左邊的點表示的數(shù)是負(fù)數(shù),距離原點越遠(yuǎn)的點所表示的數(shù)的絕對值越大”是正確解答本題的關(guān)鍵.7、A【解析】
分順時針旋轉(zhuǎn),逆時針旋轉(zhuǎn)兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標(biāo)與圖形變換——旋轉(zhuǎn),解題的關(guān)鍵是利用空間想象能力.8、D【解析】
由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進(jìn)而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當(dāng)△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關(guān)鍵.9、C【解析】
根據(jù)幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個幾何體的主視圖是由左上一個正方形、下方兩個正方形構(gòu)成的,而C選項的幾何體是由上方2個正方形、下方2個正方形構(gòu)成的,故選:C.【點睛】此題重點考查學(xué)生對幾何體三視圖的理解,掌握幾何體的主視圖是解題的關(guān)鍵.10、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】解:A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、既不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類思想的應(yīng)用.【詳解】請在此輸入詳解!12、1.【解析】
a2-b2=(a+b)(a-b)=4×3=1.故答案為:1.考點:平方差公式.13、1或5.【解析】
小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當(dāng)兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質(zhì),要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.14、取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【解析】
(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.故答案為:取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【點睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考常考題型.15、答案不唯一,如1,2,3;【解析】分析:設(shè)a,b,c是任意實數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設(shè)a,b,c是任意實數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設(shè)a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點睛:本題考查了命題的真假,舉例說明即可,16、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.設(shè)DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).三、解答題(共8題,共72分)17、(4)500;(4)440,作圖見試題解析;(4)4.4.【解析】
(4)利用0.5小時的人數(shù)除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時的百分?jǐn)?shù),即可求出4.5小時的人數(shù),畫圖即可;(4)計算出該市中小學(xué)生一天中陽光體育運動的平均時間即可.【詳解】解:(4)由題意可得:0.5小時的人數(shù)為:400人,所占比例為:40%,∴本次調(diào)查共抽樣了500名學(xué)生;(4)4.5小時的人數(shù)為:500×4.4=440(人),如圖所示:(4)根據(jù)題意得:=4.4,即該市中小學(xué)生一天中陽光體育運動的平均時間為4.4小時.考點:4.頻數(shù)(率)分布直方圖;4.扇形統(tǒng)計圖;4.加權(quán)平均數(shù).18、(1)200名;折線圖見解析;(2)1210人.【解析】
(1)由“其他”的人數(shù)和所占百分?jǐn)?shù),求出全部調(diào)查人數(shù);先由“體育”所占百分?jǐn)?shù)和全部調(diào)查人數(shù)求出體育的人數(shù),進(jìn)一步求出閱讀的人數(shù),補全折線統(tǒng)計圖;(2)利用樣本估計總體的方法計算即可解答.【詳解】(1)調(diào)查學(xué)生總?cè)藬?shù)為40÷20%=200(人),體育人數(shù)為:200×30%=60(人),閱讀人數(shù)為:200﹣(60+30+20+40)=200﹣150=50(人).補全折線統(tǒng)計圖如下:.(2)2200×=1210(人).答:估計該校學(xué)生中愛好閱讀和愛好體育的人數(shù)大約是1210人.【點睛】本題考查了統(tǒng)計知識的應(yīng)用,試題以圖表為載體,要求學(xué)生能從中提取信息來解題,與實際生活息息相關(guān),符合新課標(biāo)的理念.19、(1)見解析;(2)與相切,理由見解析.【解析】
(1)作出AD的垂直平分線,交AB于點O,進(jìn)而利用AO為半徑求出即可;
(2)利用半徑相等結(jié)合角平分線的性質(zhì)得出OD∥AC,進(jìn)而求出OD⊥BC,進(jìn)而得出答案.【詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點和,②作直線,與相交于點,③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【點睛】本題主要考查了切線的判定以及線段垂直平分線的作法與性質(zhì)等知識,掌握切線的判定方法是解題關(guān)鍵.20、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時,y=1∴點F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時,y=1;當(dāng)y=0時,x=-12∴點G坐標(biāo)為(-1,1),點H坐標(biāo)為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設(shè)過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時,y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標(biāo)為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進(jìn)行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(biāo)(-4,0)21、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】
(1)當(dāng)x=0時的y值即為A、B兩點之間的距離,由圖可知當(dāng)=2時,甲追上了乙,則可知(甲速度-乙速度)×?xí)r間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標(biāo),再用待定系數(shù)法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米/分;(2)設(shè)線段EF所在直線的函數(shù)解析式為:y=kx+b,∵1×(95﹣60)=35,∴點F的坐標(biāo)為(3,35),則2k+b=03k+b=35,解得k=35∴線段EF所在直線的函數(shù)解析式為y=35x﹣70;(3)∵線段FG∥x軸,∴甲、乙兩機器人的速度都是60米/分;(4)A、C兩點之間的距離為70+60×7=490米;(5)設(shè)前2分鐘,兩機器人出發(fā)x分鐘相距21米,由題意得,60x+70﹣95x=21,解得,x=1.2,前2分鐘﹣3分鐘,兩機器人相距21米時,由題意得,35x﹣70=21,解得,x=2.1.4分鐘﹣7分鐘,直線GH經(jīng)過點(4,35)和點(7,0),設(shè)線段GH所在直線的函數(shù)解析式為:y=kx+b,則,4k+b=357k+b=0,解得k=-則直線GH的方程為y=-353x+當(dāng)y=21時,解得x=4.6,答:兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【點睛】本題考查了一次函數(shù)的應(yīng)用,讀懂圖像是解題關(guān)鍵..22、(1)見解析;(2);(1)DE的長分別為或1.【解析】
(1)由比例中項知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當(dāng)△AEC與以點E、M、N為頂點所組成的三角形相似時①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點E作EH⊥AC,垂足為點H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設(shè)DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長分別為或1.【點睛】本題是相似三角形的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點.23、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】
(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側(cè),根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結(jié)合A、B兩點的坐標(biāo),利用待定系數(shù)法求出a、b的值,可得拋物線L的表達(dá)式;(2)由C、B兩點的坐標(biāo),利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進(jìn)一步確定拋物線的頂點坐標(biāo);通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法律法規(guī)經(jīng)濟(jì)與施工-二級注冊建筑師《法律、法規(guī)、經(jīng)濟(jì)與施工》押題密卷2
- 建筑裝飾裝修工程設(shè)計制圖標(biāo)準(zhǔn)
- 人教版語文一年級上冊全冊電子備課教案
- 高一化學(xué)教案:第一單元核外電子排布與周期律
- 2024屆湖北省黃梅縣某中學(xué)高考化學(xué)必刷試卷含解析
- 2024高中物理第三章相互作用4力的合成課后作業(yè)含解析新人教版必修1
- 2024高中語文考點鏈接6論述類文本閱讀提升訓(xùn)練含解析新人教版必修5
- 2024高考化學(xué)一輪復(fù)習(xí)第9章化學(xué)實驗基礎(chǔ)第30講物質(zhì)的分離和提純精練含解析
- 2024高考化學(xué)一輪復(fù)習(xí)第四章第5課時氨和銨鹽教案魯科版
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題十八20世紀(jì)的戰(zhàn)爭與和平第41講烽火連綿的局部戰(zhàn)爭及和平與發(fā)展教學(xué)案+練習(xí)人民版
- 2024年杭州師范大學(xué)附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 2024-2025學(xué)年度第一學(xué)期四年級數(shù)學(xué)寒假作業(yè)
- 中考語文真題專題復(fù)習(xí) 小說閱讀(第01期)(解析版)
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導(dǎo)管置管技術(shù)
- 《陸上風(fēng)電場工程概算定額》NBT 31010-2019
- DB11T 489-2024 建筑基坑支護(hù)技術(shù)規(guī)程
- 魯科版物理五四制八年級下冊全冊課件
- 267條表情猜成語【動畫版】
- 男性公民兵役登記應(yīng)征報名表
- 水蓄冷與冰蓄冷地比較
評論
0/150
提交評論