![揭陽市重點(diǎn)中學(xué)2024年數(shù)學(xué)高一下期末經(jīng)典試題含解析_第1頁](http://file4.renrendoc.com/view4/M02/33/39/wKhkGGZT-SKACji9AAJVqZ9f7xM094.jpg)
![揭陽市重點(diǎn)中學(xué)2024年數(shù)學(xué)高一下期末經(jīng)典試題含解析_第2頁](http://file4.renrendoc.com/view4/M02/33/39/wKhkGGZT-SKACji9AAJVqZ9f7xM0942.jpg)
![揭陽市重點(diǎn)中學(xué)2024年數(shù)學(xué)高一下期末經(jīng)典試題含解析_第3頁](http://file4.renrendoc.com/view4/M02/33/39/wKhkGGZT-SKACji9AAJVqZ9f7xM0943.jpg)
![揭陽市重點(diǎn)中學(xué)2024年數(shù)學(xué)高一下期末經(jīng)典試題含解析_第4頁](http://file4.renrendoc.com/view4/M02/33/39/wKhkGGZT-SKACji9AAJVqZ9f7xM0944.jpg)
![揭陽市重點(diǎn)中學(xué)2024年數(shù)學(xué)高一下期末經(jīng)典試題含解析_第5頁](http://file4.renrendoc.com/view4/M02/33/39/wKhkGGZT-SKACji9AAJVqZ9f7xM0945.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
揭陽市重點(diǎn)中學(xué)2024年數(shù)學(xué)高一下期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在△ABC中角ABC的對(duì)邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.2.在平面坐標(biāo)系中,是圓上的四段?。ㄈ鐖D),點(diǎn)P在其中一段上,角以O(shè)x為始邊,OP為終邊,若,則P所在的圓弧最有可能的是()A. B. C. D.3.《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,甲所得為()A.錢 B.錢 C.錢 D.錢4.已知m,n是兩條不同的直線,是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則5.下列事件是隨機(jī)事件的是(1)連續(xù)兩次擲一枚硬幣,兩次都出現(xiàn)正面向上.(2)異性電荷相互吸引(3)在標(biāo)準(zhǔn)大氣壓下,水在℃時(shí)結(jié)冰(4)任意擲一枚骰子朝上的點(diǎn)數(shù)是偶數(shù)A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)6.對(duì)于不同的直線l、、及平面,下列命題中錯(cuò)誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.Rt△ABC的三個(gè)頂點(diǎn)都在一個(gè)球面上,兩直角邊的長分別為6和8,且球心O到平面ABC的距離為12,則球的半徑為()A.13 B.12 C.5 D.108.某幾何體的三視圖如圖所示,則該幾何體的表面積是()A.2 B. C. D.129.已知圓錐的側(cè)面展開圖是一個(gè)半徑為6,圓心角為的扇形,則圓錐的高為()A. B. C. D.510.定義運(yùn)算為執(zhí)行如圖所示的程序框圖輸出的值,則式子的值是A.-1 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,已知,,則________.12.已知數(shù)列滿足,(),則________.13.若圓:與圓:相交于,兩點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,則公共弦的長度是______.14.已知線段上有個(gè)確定的點(diǎn)(包括端點(diǎn)與).現(xiàn)對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)(從…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù)).如圖:在點(diǎn)上標(biāo),稱為點(diǎn),然后從點(diǎn)開始數(shù)到第二個(gè)數(shù),標(biāo)上,稱為點(diǎn),再從點(diǎn)開始數(shù)到第三個(gè)數(shù),標(biāo)上,稱為點(diǎn)(標(biāo)上數(shù)的點(diǎn)稱為點(diǎn)),……,這樣一直繼續(xù)下去,直到,,,…,都被標(biāo)記到點(diǎn)上,則點(diǎn)上的所有標(biāo)記的數(shù)中,最小的是_______.15.等比數(shù)列中首項(xiàng),公比,則______.16.在中,分別是角的對(duì)邊,,且的周長為5,面積,則=______三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如果定義在上的函數(shù),對(duì)任意的,都有,則稱該函數(shù)是“函數(shù)”.(I)分別判斷下列函數(shù):①;②;③,是否為“函數(shù)”?(直接寫出結(jié)論)(II)若函數(shù)是“函數(shù)”,求實(shí)數(shù)的取值范圍.(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與18.在中,已知角的對(duì)邊分別為,且.(1)求角的大??;(2)若,,求的面積.19.(1)已知,,且、都是第二象限角,求的值.(2)求證:.20.已知等比數(shù)列的各項(xiàng)均為正數(shù),且,,數(shù)列的前項(xiàng)和.(1)求;(2)記,求數(shù)列的前項(xiàng)和.21.在中,角,,的對(duì)邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
首先利用同角三角函數(shù)的關(guān)系式求出sinC的值,進(jìn)一步利用余弦定理和三角形的面積公式及基本不等式的應(yīng)用求出結(jié)果.【詳解】△ABC中角ABC的對(duì)邊分別為a、b、c,cosC,利用同角三角函數(shù)的關(guān)系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,基本不等式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.2、A【解析】
根據(jù)三角函數(shù)線的定義,分別進(jìn)行判斷排除即可得答案.【詳解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,則cosα<sinα<tanα;若P在EF段,正切,余弦為負(fù)值,正弦為正,tanα<cosα<sinα;若P在GH段,正切為正值,正弦和余弦為負(fù)值,cosα<sinα<tanα.∴P所在的圓弧最有可能的是.故選:A.【點(diǎn)睛】本題任意角的三角函數(shù)的應(yīng)用,根據(jù)角的大小判斷角的正弦、余弦、正切值的正負(fù)及大小,為基礎(chǔ)題.3、B【解析】設(shè)甲、乙、丙、丁、戊所得錢分別為,則,解得,又,則,故選B.4、C【解析】
利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對(duì)選項(xiàng)分析選擇.【詳解】對(duì)于A,若,,則或者;故A錯(cuò)誤;對(duì)于B,若,則可能在內(nèi)或者平行于;故B錯(cuò)誤;對(duì)于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對(duì)于D.若,,則與可能垂直,如墻角;故D錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應(yīng)用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運(yùn)用定理是關(guān)鍵.5、D【解析】試題分析:根據(jù)隨機(jī)事件的定義:在相同條件下,可能發(fā)生也可能不發(fā)生的現(xiàn)象(2)是必然發(fā)生的,(3)是不可能發(fā)生的,所以不是隨機(jī)事件,故選擇D考點(diǎn):隨機(jī)事件的定義6、C【解析】
由平面的基本性質(zhì)及其推論得:對(duì)于選項(xiàng)C,可能l∥n或l與n相交或l與n異面,即選項(xiàng)C錯(cuò)誤,得解.【詳解】由平行公理4可得選項(xiàng)A正確,由線面垂直的性質(zhì)可得選項(xiàng)B正確,由異面直線所成角的定義可得選項(xiàng)D正確,對(duì)于選項(xiàng)C,若l∥α,n∥α,則l∥n或l與n相交或l與n異面,即選項(xiàng)C錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了平面中線線、線面的關(guān)系及性質(zhì)定理與推論的應(yīng)用,屬簡單題.7、A【解析】
利用勾股定理計(jì)算出球的半徑.【詳解】的斜邊長為,所以外接圓的半徑為,所以球的半徑為.故選:A【點(diǎn)睛】本小題主要考查勾股定理計(jì)算,考查球的半徑有關(guān)計(jì)算,屬于基礎(chǔ)題.8、C【解析】
由該幾何體的三視圖可知該幾何體為底面是等腰直角三角形的直棱柱,再結(jié)合棱柱的表面積公式求解即可.【詳解】解:由該幾何體的三視圖可知,該幾何體為底面是等腰直角三角形的直棱柱,又由圖可知底面等腰直角三角形的直角邊長為1,棱柱的高為1,則該幾何體的表面積是,故選:C.【點(diǎn)睛】本題考查了幾何體的三視圖,重點(diǎn)考查了棱柱的表面積公式,屬基礎(chǔ)題.9、C【解析】
利用扇形的弧長為底面圓的周長求出后可求高.【詳解】因?yàn)閭?cè)面展開圖是一個(gè)半徑為6,圓心角為的扇形,所以圓錐的母線長為6,設(shè)其底面半徑為,則,所以,所以圓錐的高為,選C【點(diǎn)睛】圓錐的側(cè)面展開圖是扇形,如果圓錐的母線長為,底面圓的半徑長為,則該扇形的圓心角的弧度數(shù)為.10、D【解析】
由已知的程序框圖可知,本程序的功能是:計(jì)算并輸出分段函數(shù)的值,由此計(jì)算可得結(jié)論.【詳解】由已知的程序框圖可知:本程序的功能是:計(jì)算并輸出分段函數(shù)的值,可得,因?yàn)椋?,,故選D.【點(diǎn)睛】本題主要考查條件語句以及算法的應(yīng)用,屬于中檔題.算法是新課標(biāo)高考的一大熱點(diǎn),其中算法的交匯性問題已成為高考的一大亮,這類問題常常與函數(shù)、數(shù)列、不等式等交匯自然,很好地考查考生的信息處理能力及綜合運(yùn)用知識(shí)解決問題的能力,解決算法的交匯性問題的方:(1)讀懂程序框圖、明確交匯知識(shí),(2)根據(jù)給出問題與程序框圖處理問題即可.二、填空題:本大題共6小題,每小題5分,共30分。11、-16【解析】
設(shè)等差數(shù)列的公差為,利用通項(xiàng)公式求出即可.【詳解】設(shè)等差數(shù)列的公差為,得,則.故答案為【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.12、31【解析】
根據(jù)數(shù)列的首項(xiàng)及遞推公式依次求出、、……即可.【詳解】解:,故答案為:【點(diǎn)睛】本題考查利用遞推公式求出數(shù)列的項(xiàng),屬于基礎(chǔ)題.13、【解析】
根據(jù)兩圓在點(diǎn)處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運(yùn)用點(diǎn)到直線的距離公式求出圓心到公共弦的距離,進(jìn)而求出公共弦長.【詳解】由題意,圓圓心坐標(biāo),半徑,圓圓心坐標(biāo),半徑,因?yàn)閮蓤A相交于點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,所以是直角三角形,,所以,由兩點(diǎn)間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長故答案為:【點(diǎn)睛】本題主要考查兩圓公共弦的方程、圓弦長的求法和點(diǎn)到直線的距離公式,考查學(xué)生的分析能力,屬于基礎(chǔ)題.14、【解析】
將線段上的點(diǎn)考慮為一圓周,所以共有16個(gè)位置,利用規(guī)則,可知標(biāo)記2019的是,2039190除以16的余數(shù)為6,即線段的第6個(gè)點(diǎn)標(biāo)為2019,則,令,即可得.【詳解】依照題意知,標(biāo)有2的是1+2,標(biāo)有3的是1+2+3,……,標(biāo)有2019的是1+2+3+……+2019,將將線段上的點(diǎn)考慮為一圓周,所以共有16個(gè)位置,利用規(guī)則,可知標(biāo)記2019的是,2039190除以16的余數(shù)為6,即線段的第6個(gè)點(diǎn)標(biāo)為2019,,令,,解得,故點(diǎn)上的所有標(biāo)記的數(shù)中,最小的是3.【點(diǎn)睛】本題主要考查利用合情推理,分析解決問題的能力.意在考查學(xué)生的邏輯推理能力,15、9【解析】
根據(jù)等比數(shù)列求和公式,將進(jìn)行轉(zhuǎn)化,然后得到關(guān)于和的等式,結(jié)合,討論出和的值,得到答案.【詳解】因?yàn)榈缺葦?shù)列中首項(xiàng),公比,所以成首項(xiàng)為,公比為的等比數(shù)列,共項(xiàng),所以整理得因?yàn)樗钥傻茫仁接疫厼檎麛?shù),故等式左邊也需要為整數(shù),則應(yīng)是的約數(shù),所以可得,所以,當(dāng)時(shí),得,此時(shí)當(dāng)時(shí),得,此時(shí)當(dāng)時(shí),得,此時(shí),所以,故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和的基本量運(yùn)算,涉及分類討論的思想,屬于中檔題.16、【解析】
令正弦定理化簡已知等式,得到,代入題設(shè),求得的長,利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因?yàn)椋烧叶ɡ?,可得,因?yàn)榈闹荛L為5,即,所以,又因?yàn)椋?,所以.【點(diǎn)睛】本題主要考查了正弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)①、②是“函數(shù)”,③不是“函數(shù)”;(II)的取值范圍為;(III),【解析】試題分析:(1)根據(jù)“β函數(shù)”的定義判定.①、②是“β函數(shù)”,③不是“β函數(shù)”;(2)由題意,對(duì)任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由題意,對(duì)任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得實(shí)數(shù)a的取值范圍(3)對(duì)任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,驗(yàn)證。(I)①、②是“函數(shù)”,③不是“函數(shù)”.(II)由題意,對(duì)任意的,,即.因?yàn)?,所以.故.由題意,對(duì)任意的,,即.故實(shí)數(shù)的取值范圍為.(Ⅲ)()對(duì)任意的(a)若且,則,,這與在上單調(diào)遞增矛盾,(舍),(b)若且,則,這與是“函數(shù)”矛盾,(舍).此時(shí),由的定義域?yàn)椋蕦?duì)任意的,與恰有一個(gè)屬于,另一個(gè)屬于.()假設(shè)存在,使得,則由,故.(a)若,則,矛盾,(b)若,則,矛盾.綜上,對(duì)任意的,,故,即,則.()假設(shè),則,矛盾.故故,.經(jīng)檢驗(yàn),.符合題意點(diǎn)睛:此題是新定義的題目,根據(jù)已知的新概念,新信息來馬上應(yīng)用到題型中,根據(jù)函數(shù)的定義即函數(shù)沒有關(guān)于原點(diǎn)對(duì)稱的部分即可,故可以從圖像的角度來研究函數(shù);第三問可以假設(shè)存在,最后推翻結(jié)論即可。18、(1);(2).【解析】
(1)利用邊角互化思想得,由結(jié)合兩角和的正弦公式可求出的值,于此得出角的大?。唬?)由余弦定理可計(jì)算出,再利用三角形的面積公式可得出的面積.【詳解】(1)∵是的內(nèi)角,∴且,又由正弦定理:得:,化簡得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面積為.【點(diǎn)睛】本題考查正弦定理邊角互化的思想,考查余弦定理以及三角形的面積公式,本題巧妙的地方在于將配湊為,避免利用方程思想求出邊的值,考查計(jì)算能力,屬于中等題.19、(1);(2)見解析【解析】
(1)利用同角三角函數(shù)間的關(guān)系式的應(yīng)用,可求得cosα,sinβ,再利用兩角差的正弦、余弦與正切公式即可求得cos(α﹣β)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 德育工作與學(xué)校教育目標(biāo)的統(tǒng)一性
- DB 3705T 51-2024微型月季設(shè)施栽培技術(shù)規(guī)程
- 個(gè)人信用貸款第三方擔(dān)保合同樣本
- 云存儲(chǔ)硬盤空間租用合同協(xié)議
- 上市公司技術(shù)合作合同模板
- 個(gè)人房屋抵押貸款合同范本
- 臨時(shí)用工安全免責(zé)合同協(xié)議
- 個(gè)人理財(cái)規(guī)劃合同書
- 專業(yè)版辦公室裝修合同模板
- 二手汽車購銷合同范本
- 中考記敘文閱讀
- 《計(jì)算機(jī)應(yīng)用基礎(chǔ)》-Excel-考試復(fù)習(xí)題庫(含答案)
- 產(chǎn)科溝通模板
- 2023-2024學(xué)年四川省成都市小學(xué)數(shù)學(xué)一年級(jí)下冊(cè)期末提升試題
- GB/T 7462-1994表面活性劑發(fā)泡力的測(cè)定改進(jìn)Ross-Miles法
- GB/T 2934-2007聯(lián)運(yùn)通用平托盤主要尺寸及公差
- GB/T 21709.13-2013針灸技術(shù)操作規(guī)范第13部分:芒針
- 2022年青島職業(yè)技術(shù)學(xué)院單招語文考試試題及答案解析
- 急診科進(jìn)修匯報(bào)課件
- 一年級(jí)家訪記錄表(常用)
- 信息技術(shù)基礎(chǔ)ppt課件(完整版)
評(píng)論
0/150
提交評(píng)論