2024屆陜西省西安音樂學(xué)院附屬中等音樂學(xué)校高一下數(shù)學(xué)期末考試試題含解析_第1頁
2024屆陜西省西安音樂學(xué)院附屬中等音樂學(xué)校高一下數(shù)學(xué)期末考試試題含解析_第2頁
2024屆陜西省西安音樂學(xué)院附屬中等音樂學(xué)校高一下數(shù)學(xué)期末考試試題含解析_第3頁
2024屆陜西省西安音樂學(xué)院附屬中等音樂學(xué)校高一下數(shù)學(xué)期末考試試題含解析_第4頁
2024屆陜西省西安音樂學(xué)院附屬中等音樂學(xué)校高一下數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆陜西省西安音樂學(xué)院附屬中等音樂學(xué)校高一下數(shù)學(xué)期末考試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算:的結(jié)果為()A.1 B.2 C.-1 D.-22.已知函數(shù),此函數(shù)的圖象如圖所示,則點的坐標(biāo)是()A. B. C. D.3.已知,則=()A. B. C. D.4.在等差數(shù)列中,若,且它的前項和有最大值,則使成立的正整數(shù)的最大值是()A.15 B.16 C.17 D.145.設(shè)△的內(nèi)角所對的邊為,,,,則()A. B.或 C. D.或6.已知函數(shù)的部分圖象如圖,則的值為()A. B. C. D.7.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.8.《九章算術(shù)》卷第六《均輸》中,提到如下問題:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.問中間二節(jié)欲均容,各多少?”其大致意思是說,若九節(jié)竹每節(jié)的容量依次成等差數(shù)列,下三節(jié)容量四升,上四節(jié)容量三升,則中間兩節(jié)的容量各是()A.升、升 B.升、升C.升、升 D.升、升9.對于復(fù)數(shù),定義映射.若復(fù)數(shù)在映射作用下對應(yīng)復(fù)數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限10.不等式所表示的平面區(qū)域是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知,,,則角__________.12.若數(shù)列{an}滿足a1=2,a13.已知某中學(xué)高三學(xué)生共有800人參加了數(shù)學(xué)與英語水平測試,現(xiàn)學(xué)校決定利用隨機數(shù)表法從中抽取100人的成績進(jìn)行統(tǒng)計,先將800人按001,002,…,800進(jìn)行編號.如果從第8行第7列的數(shù)開始從左向右讀,(下面是隨機數(shù)表的第7行至第9行)844217533157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815則最先抽取的2個人的編號依次為_____.14.方程的解集是______.15.有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內(nèi)放一個半徑為的鐵球,并注入水,使水面與球正好相切,然后將球取出,則這時容器中水的深度為___________.16.已知算式,在方框中填入兩個正整數(shù),使它們的乘積最大,則這兩個正整數(shù)之和是___.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列中,,,數(shù)列滿足.(1)求數(shù)列中的前四項;(2)求證:數(shù)列是等差數(shù)列;(3)若,試判斷數(shù)列是否有最小項,若有最小項,求出最小項.18.記數(shù)列的前項和為,已知點在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),求數(shù)列的前項和.19.求值:(1)一個扇形的面積為1,周長為4,求圓心角的弧度數(shù);(2)已知,計算.20.已知直線與圓相交于,兩點.(1)若,求;(2)在軸上是否存在點,使得當(dāng)變化時,總有直線、的斜率之和為0,若存在,求出點的坐標(biāo):若不存在,說明理由.21.如圖所示,一個半圓和長方形組成的鐵皮,長方形的邊為半圓的直徑,為半圓的圓心,,,現(xiàn)要將此鐵皮剪出一個三角形,使得,.(1)設(shè),求三角形鐵皮的面積;(2)求剪下的鐵皮三角形的面積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用恒等變換公式化簡得的答案.【詳解】故答案選B【點睛】本題考查了三角恒等變換,意在考查學(xué)生的計算能力.2、B【解析】

根據(jù)確定的兩個相鄰零點的值可以求出最小正周期,進(jìn)而利用正弦型最小正周期公式求出的值,最后把其中的一個零點代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當(dāng)時,,因此的坐標(biāo)為:.故選:B【點睛】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎(chǔ)題.3、C【解析】由得:,所以,故選D.4、C【解析】

由題意可得,,且,由等差數(shù)列的性質(zhì)和求和公式可得結(jié)論.【詳解】∵等差數(shù)列的前項和有最大值,∴等差數(shù)列為遞減數(shù)列,又,∴,,∴,又,,∴成立的正整數(shù)的最大值是17,故選C.【點睛】本題考查等差數(shù)列的性質(zhì),涉及等差數(shù)列的求和公式,屬中檔題.5、B【解析】試題分析:因為,,,由正弦定理,因為是三角形的內(nèi)角,且,所以,故選B.考點:正弦定理6、B【解析】

根據(jù)函數(shù)的部分圖象求出、、和的值,寫出的解析式,再計算的值.【詳解】根據(jù)函數(shù),,的部分圖象知,,,,解得;由五點法畫圖知,,解得;,.故選.【點睛】本題主要考查利用三角函數(shù)的部分圖象求函數(shù)解析式以及利用兩角和的正弦公式求三角函數(shù)的值.7、D【解析】

利用三角形面積公式列出關(guān)系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,

∴,

解得:,

由余弦定理得:,

則.

故選D.【點睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.8、D【解析】

由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,an,公差為d,利用等差數(shù)列的前n項和公式和通項公式列出方程組,求出首項和公差,由此能求出中間一節(jié)的容量.【詳解】由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,a9,公差為d,即=4,=3,∴=4,=3,解得,,∴中間兩節(jié)的容量,,故選:D.【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列的通項公式列出方程組,解出首項與公差即可,考查計算能力,屬于基礎(chǔ)題.9、A【解析】,對應(yīng)點,在第四象限.10、D【解析】

根據(jù)二元一次不等式組表示平面區(qū)域進(jìn)行判斷即可.【詳解】不等式組等價為或則對應(yīng)的平面區(qū)域為D,

故選:D.【點睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎(chǔ).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【詳解】根據(jù)三角形正弦定理得到:,故得到或,因為故得到故答案為.【點睛】在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.12、2×【解析】

判斷數(shù)列是等比數(shù)列,然后求出通項公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點睛】本題考查等比數(shù)列的判斷以及通項公式的求法,考查計算能力.13、165;535【解析】

按照題設(shè)要求讀取隨機數(shù)表得到結(jié)果,注意不符合要求的數(shù)據(jù)要舍去.【詳解】讀取的第一個數(shù):滿足;讀取的第二個數(shù):不滿足;讀取的第三個數(shù):不滿足;讀取的第三個數(shù):滿足.【點睛】隨機數(shù)表的讀取規(guī)則:從指定位置開始,按照指定位數(shù)讀取,一次讀取一組,若讀取的數(shù)不符合規(guī)定(不在范圍之內(nèi)),則舍去,重新讀取.14、或【解析】

根據(jù)三角函數(shù)的性質(zhì)求解即可【詳解】,如圖所示:則故答案為:或【點睛】本題考查由三角函數(shù)值求解對應(yīng)自變量取值范圍,結(jié)合圖形求解能夠避免錯解,屬于基礎(chǔ)題15、15【解析】

根據(jù)球的半徑,先求得球的體積;根據(jù)圓與等邊三角形關(guān)系,設(shè)出的邊長為,由面積關(guān)系表示出圓錐的體積;設(shè)拿出鐵球后水面高度為,用表示出水的體積,由即可求得液面高度.【詳解】因為鐵球半徑為,所以由球的體積公式可得,設(shè)的邊長為,則由面積公式與內(nèi)切圓關(guān)系可得,解得,則圓錐的高為.則圓錐的體積為,設(shè)拿出鐵球后的水面為,且到的距離為,如下圖所示:則由,可得,所以拿出鐵球后水的體積為,由,可知,解得,即將鐵球取出后容器中水的深度為15.故答案為:15.【點睛】本題考查了圓錐內(nèi)切球性質(zhì)的應(yīng)用,球的體積公式及圓錐體積公式的求法,屬于中檔題.16、.【解析】

設(shè)填入的數(shù)從左到右依次為,則,利用基本不等式可求得的最大值及此時的和.【詳解】設(shè)在方框中填入的兩個正整數(shù)從左到右依次為,則,于是,,當(dāng)且僅當(dāng)時取等號,此時.故答案為:15【點睛】本題考查基本不等式成立的條件,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,,;(2)見解析;(3)有最小項,最小項是.【解析】

(1)由數(shù)列的遞推公式,可計算出數(shù)列的前四項,代入,即可計算出數(shù)列中的前四項;(2)利用數(shù)列的遞推公式計算出為常數(shù),結(jié)合等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列;(3)求出數(shù)列的通項公式,可求出,進(jìn)而得出,利用作商法判斷數(shù)列的單調(diào)性,從而可求出數(shù)列的最小項.【詳解】(1)且,,,.,,,,;(2),而,,.因此,數(shù)列是首項為,公差為的等差數(shù)列;(3)由(2)得,則.,顯然,,當(dāng)時,,則;當(dāng)時,,則;當(dāng)時,,則;當(dāng)且時,,即.,,所以,數(shù)列有最小項,最小項是.【點睛】本題考查利用數(shù)列的遞推公式寫出前若干項,同時也考查了等差數(shù)列的證明以及數(shù)列最小項的求解,涉及數(shù)列單調(diào)性的證明,考查推理能力與計算能力,屬于中等題.18、(Ⅰ);(Ⅱ).【解析】

(1)本題首先可根據(jù)點在函數(shù)的圖像上得出,然后根據(jù)與的關(guān)系即可求得數(shù)列的通項公式;(2)首先可根據(jù)數(shù)列的通項公式得出,然后根據(jù)裂項相消法求和即可得出結(jié)果?!驹斀狻?1)由題意知.當(dāng)時,;當(dāng)時,,適合上式.所以.(2).則?!军c睛】本題考查根據(jù)數(shù)列的前項和為求數(shù)列的通項公式,考查裂項相消法求和,與滿足以及,考查計算能力,是中檔題。19、(1);(2).【解析】

(1)設(shè)出扇形的半徑為,弧長為,利用面積、周長的值,得到關(guān)于的方程;(2)由已知條件得到,再代入所求的式子進(jìn)行約分求值.【詳解】(1)設(shè)扇形的半徑為,弧長為,則解得:所以圓心角的弧度數(shù).(2)因為,所以,所以.【點睛】若三個中,只要知道其中一個,則另外兩個都可求出,即知一求二.20、(1);(2)存在.【解析】

(1)由題得到的距離為,即得,解方程即得解;(2)設(shè),,存在點滿足題意,即,把韋達(dá)定理代入方程化簡即得解.【詳解】(1)因為圓,所以圓心坐標(biāo)為,半徑為2,因為,所以到的距離為,由點到直線的距離公式可得:,解得.(2)設(shè),,則得,因為,所以,,設(shè)存在點滿足題意,即,所以,因為,所以,所以,解得.所以存在點符合題意.【點睛】本題主要考查直線和圓的位置關(guān)系,考查直線和圓的探究性問題的解答,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.21、(1)三角形鐵皮的面積為;(2)剪下的鐵皮三角形的面積的最大值為.【解析】試題分析:(1)利用銳角三角函數(shù)求出和的長度,然后以為底邊、以為高,利用三角形面積公式求出三角形的面積;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論