陜西省西北工業(yè)大學(xué)附中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第1頁
陜西省西北工業(yè)大學(xué)附中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第2頁
陜西省西北工業(yè)大學(xué)附中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第3頁
陜西省西北工業(yè)大學(xué)附中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第4頁
陜西省西北工業(yè)大學(xué)附中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西北工業(yè)大學(xué)附中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知底面半徑為1,體積為的圓柱,內(nèi)接于一個高為圓錐(如圖),線段AB為圓錐底面的一條直徑,則從點A繞圓錐的側(cè)面到點B的最短距離為()A.8 B. C. D.42.已知是第二象限角,且,則的值為A. B. C. D.3.給出下面四個命題:①;②;③;④.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4.若,,,點C在AB上,且,設(shè),則的值為()A. B. C. D.5.用長為4,寬為2的矩形做側(cè)面圍成一個圓柱,此圓柱軸截面面積為()A.8 B. C. D.6.如圖,在四棱錐中,底面,底面為直角梯形,,,則直線與平面所成角的大小為()A. B. C. D.7.若,且,,則()A. B. C. D.8.一幾何體的三視圖如圖所示,則該幾何體的表面積為()A.16 B.20 C.24 D.289.在中,,.若點滿足,則()A. B. C. D.10.已知函數(shù)的部分圖象如圖所示,則函數(shù)在上的最大值為()A. B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.兩平行直線與之間的距離為_______.12.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.13.已知函數(shù),若,則的取值圍為_________.14.給出下列四個命題:①在中,若,則;②已知點,則函數(shù)的圖象上存在一點,使得;③函數(shù)是周期函數(shù),且周期與有關(guān),與無關(guān);④設(shè)方程的解是,方程的解是,則.其中真命題的序號是______.(把你認為是真命題的序號都填上)15.已知,則的值為.16.已知扇形的圓心角為,半徑為,則扇形的面積.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,滿足,,且.(1)求;(2)在中,若,,求.18.已知三角形ABC的頂點為,,,M為AB的中點.(1)求CM所在直線的方程;(2)求的面積.19.已知函數(shù),.(1)求函數(shù)的單調(diào)減區(qū)間;(2)若存在,使等式成立,求實數(shù)的取值范圍.20.某廠每年生產(chǎn)某種產(chǎn)品萬件,其成本包含固定成本和浮動成本兩部分.已知每年固定成本為20萬元,浮動成本,.若每萬件該產(chǎn)品銷售價格為40萬元,且每年該產(chǎn)品產(chǎn)銷平衡.(1)設(shè)年利潤為(萬元),試求與的關(guān)系式;(2)年產(chǎn)量為多少萬件時,該廠所獲利潤最大?并求出最大利潤.21.在平面直角坐標系中,直線截以原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,當(dāng)長最小時,求直線的方程;(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點,若直線分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

先求解圓錐的底面半徑,再根據(jù)側(cè)面展開圖的結(jié)構(gòu)計算扇形中間的距離即可.【詳解】設(shè)圓柱的高為,則,得.因為,所以為的中位線,所以,則.即圓錐的底面半徑為1,母線長為4,則展開后所得扇形的弧長為,圓心角為.所以從點A繞圓錐的側(cè)面到點B的最短距離為.故選:C.【點睛】本題主要考查了圓柱與圓錐內(nèi)切求解有關(guān)量的問題以及圓錐的側(cè)面積展開求距離最小值的問題.屬于中檔題.2、B【解析】試題分析:因為是第二象限角,且,所以.考點:兩角和的正切公式.3、B【解析】①;②;③;④,所以正確的為①②,選B.4、B【解析】

利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.5、B【解析】

分別討論當(dāng)圓柱的高為4時,當(dāng)圓柱的高為2時,求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時,設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時,設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.6、A【解析】

取中點,中點,連接,先證明為所求角,再計算其大小.【詳解】取中點,中點,連接.設(shè)易知:平面平面易知:四邊形為平行四邊形平面,即為直線與平面所成角故答案選A【點睛】本題考查了線面夾角,先找出線面夾角是解題的關(guān)鍵.7、B【解析】

利用兩角和差的正弦公式將β=α-(α﹣β)進行轉(zhuǎn)化求解即可.【詳解】β=α-(α﹣β),∵<α,<β,β<,∴α,∵sin()0,∴<0,則cos(),∵sinα,∴cosα,則sinβ=sin[α-(α﹣β)]=sinαcos(α﹣β)-cosαsin(α﹣β)(),故選B【點睛】本題主要考查利用兩角和差的正弦公式,同角三角函數(shù)基本關(guān)系,將β=α-(α﹣β)進行轉(zhuǎn)化是解決本題的關(guān)鍵,是基礎(chǔ)題8、B【解析】

根據(jù)三視圖可還原幾何體,根據(jù)長度關(guān)系依次計算出各個側(cè)面和上下底面的面積,加和得到表面積.【詳解】有三視圖可得幾何體的直觀圖如下圖所示:其中:,,,則:,,,,幾何體表面積:本題正確選項:【點睛】本題考查幾何體表面積的求解問題,關(guān)鍵是能夠根據(jù)三視圖準確還原幾何體,從而根據(jù)長度關(guān)系可依次計算出各個面的面積.9、A【解析】

試題分析:,故選A.10、A【解析】

由圖象求出T、ω和φ的值,寫出f(x)的解析式,再求x∈[6,10]時函數(shù)f(x)的最大值.【詳解】由圖象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函數(shù)的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的圖象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函數(shù)的解析式是f(x)=sin(x)當(dāng)x∈[6,10]時,x∈[,],∴sin(x)∈[﹣1,];∴函數(shù)f(x)的最大值是.故選A.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,熟記圖像與性質(zhì)是關(guān)鍵,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先根據(jù)兩直線平行求出,再根據(jù)平行直線間的距離公式即可求出.【詳解】因為直線的斜率為,所以直線的斜率存在,,即,解得或.當(dāng)時,,即,故兩平行直線的距離為.當(dāng)時,,,兩直線重合,不符合題意,應(yīng)舍去.故答案為:.【點睛】本題主要考查平行直線間的距離公式的應(yīng)用,以及根據(jù)兩直線平行求參數(shù),屬于基礎(chǔ)題.12、【解析】

根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【點睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學(xué)生的計算能力,屬于難題.13、【解析】

由函數(shù),根據(jù),得到,再由,得到,結(jié)合余弦函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),又由,即,即,因為,則,所以或,即或,所以實數(shù)的取值圍為.故答案為:.【點睛】本題主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟練應(yīng)用余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、①③【解析】

①利用三角形的內(nèi)角和定理以及正弦函數(shù)的單調(diào)性進行判斷;②根據(jù)余弦函數(shù)的有界性可進行判斷;③利用周期函數(shù)的定義,結(jié)合余弦函數(shù)的周期性進行判斷;④根據(jù)互為反函數(shù)圖象的對稱性進行判斷.【詳解】①在中,若,則,則,由于正弦函數(shù)在區(qū)間上為增函數(shù),所以,故命題①正確;②已知點,則函數(shù),所以該函數(shù)圖象上不存在一點,使得,故命題②錯誤;③函數(shù)的是周期函數(shù),當(dāng)時,,該函數(shù)的周期為.當(dāng)時,,該函數(shù)的周期為.所以,函數(shù)的周期與有關(guān),與無關(guān),命題③正確;④設(shè)方程的解是,方程的解是,由,可得,由,可得,則可視為函數(shù)與直線交點的橫坐標,可視為函數(shù)與直線交點的橫坐標,如下圖所示:聯(lián)立,得,可得點,由于函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,則直線與函數(shù)和函數(shù)圖象的兩個交點關(guān)于點對稱,所以,命題④錯誤.故答案為:①③.【點睛】本題考查三角函數(shù)的周期、正弦函數(shù)單調(diào)性的應(yīng)用、互為反函數(shù)圖象的對稱性的應(yīng)用以及余弦函數(shù)有界性的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.15、【解析】

利用商數(shù)關(guān)系式化簡即可.【詳解】,故填.【點睛】利用同角的三角函數(shù)的基本關(guān)系式可以化簡一些代數(shù)式,常見的方法有:(1)弦切互化法:即把含有正弦和余弦的代數(shù)式化成關(guān)于正切的代數(shù)式,也可以把含有正切的代數(shù)式化為關(guān)于余弦和正弦的代數(shù)式;(2)“1”的代換法:有時可以把看成.16、【解析】試題分析:由題可知,;考點:扇形面積公式三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將展開得到答案.(2),平方計算得到答案.【詳解】解:(1)因為所以,,所以,,又夾角在上,∴;(2)因為,所以,,所以,邊的長度為.【點睛】本題考查了向量的夾角,向量的加減計算,意在考查學(xué)生的計算能力.18、(1)(2)【解析】

(1)先求出點M的坐標,再寫出直線的兩點式方程化簡即得解;(2)求出和點A到直線CM的距離即得解.【詳解】(1)AB中點M的坐標是,所以中線CM所在直線的方程是,即.(2),因為直線CM的方程是,所以點A到直線CM的距離是,又,所以.【點睛】本題主要考查直線方程的求法,考查兩點間的距離的計算和點到直線的距離的計算,意在考查學(xué)生對這些知識的理解掌握水平.19、(1),.(2)【解析】

(1)利用降次公式和輔助角公式化簡表達式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得函數(shù)的單調(diào)減區(qū)間.(2)首先求得當(dāng)時的值域.利用換元法令,將轉(zhuǎn)化為,根據(jù)的范圍,結(jié)合二次函數(shù)的性質(zhì),求得的取值范圍.【詳解】(1)由()解得().所以所求函數(shù)的單調(diào)減區(qū)間是,.(2)當(dāng)時,,,即.令(),則關(guān)于的方程在上有解,即關(guān)于的方程在上有解.當(dāng)時,.所以,則.因此所求實數(shù)的取值范圍是.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查根據(jù)方程的根存在求參數(shù)的取值范圍,考查二次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1);(2)產(chǎn)量(萬件)時,該廠所獲利潤最大為100萬元.【解析】

(1)由銷售收入減去成本可得利潤;(2)分段求出的最大值,然后比較可得.【詳解】(1)由題意;即;(2)時,,時,,當(dāng)時,在是遞增,在上遞減,時,綜上,產(chǎn)量(萬件)時,該廠所獲利潤最大為100萬元.【點睛】本題考查函數(shù)模型的應(yīng)用,根據(jù)所給函數(shù)模型求出函數(shù)解析式,然后由分段函數(shù)性質(zhì)分段求出最大值,比較后得出函數(shù)最大值.考查學(xué)生的應(yīng)用能力.21、(1);(1);(3)定值為.【解析】試題分析:(1)求出點到直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論