




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年山東省德州市名校中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.中華人民共和國國家統(tǒng)計局網(wǎng)站公布,2016年國內(nèi)生產(chǎn)總值約為74300億元,將74300億用科學計數(shù)法可以表示為()A. B. C. D.2.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣3.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應的點是()A.點A B.點B C.點C D.點D4.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃5.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體6.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.7.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點的半徑D.垂直于同一直線的兩條直線互相垂直8.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<09.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據(jù)表中的信息判斷,下列結論中錯誤的是()成績(分)3029282618人數(shù)(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數(shù)為29.4分C.該班學生這次考試成績的眾數(shù)為30分D.該班學生這次考試成績的中位數(shù)為28分10.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點B的坐標為B(),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖像上,那么k的值是_______12.若關于x的方程有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是______.13.把拋物線y=2x2向右平移3個單位,再向下平移2個單位,得到的新的拋物線的表達式是_____.14.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.15.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運動,當⊙P與x軸相切時,圓心P的坐標為_____.16.不等式組x-2>0①2x-6>2②三、解答題(共8題,共72分)17.(8分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側,連接OP.求證:AP=BQ;當BQ=時,求的長(結果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.18.(8分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數(shù)表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.19.(8分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.20.(8分)如圖,某校數(shù)學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數(shù)據(jù):sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7321.(8分)如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最?。咳绻嬖?,求出點的坐標;如果不存在,說明理由.22.(10分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.23.(12分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側構造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構造的方法;(2)參考(1)中構造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.24.解方程:=1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:74300億=7.43×1012,
故選:D.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、C【解析】試題分析:找出一元二次方程的系數(shù)a,b及c的值,利用根與系數(shù)的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數(shù)的關系3、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最?。蔬xB.4、A【解析】
用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.5、A【解析】
根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結構特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關鍵.6、D【解析】
根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、C【解析】分析是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯誤,垂直于同一直線的兩條直線平行.故選C.8、B【解析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質(zhì)和圖象9、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數(shù)為30分,故D錯誤;10、C【解析】
根據(jù)題意可以寫出y關于x的函數(shù)關系式,然后令x=40求出相應的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-12【解析】過E點作EF⊥OC于F,如圖所示:
由條件可知:OE=OA=5,,所以EF=3,OF=4,
則E點坐標為(-4,3)
設反比例函數(shù)的解析式是y=,則有k=-4×3=-12.故答案是:-12.12、a>﹣.【解析】試題分析:已知關于x的方程2x2+x﹣a=0有兩個不相等的實數(shù)根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.13、y=1(x﹣3)1﹣1.【解析】
拋物線的平移,實際上就是頂點的平移,先求出原拋物線的頂點坐標,再根據(jù)平移規(guī)律,推出新拋物線的頂點坐標,根據(jù)頂點式可求新拋物線的解析式.【詳解】∵y=1x1的頂點坐標為(0,0),∴把拋物線右平移3個單位,再向下平移1個單位,得新拋物線頂點坐標為(3,﹣1),∵平移不改變拋物線的二次項系數(shù),∴平移后的拋物線的解析式是y=1(x﹣3)1﹣1.故答案為y=1(x﹣3)1﹣1.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)1+k
(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎上“h值正右移,負左移;k值正上移,負下移”.14、300π【解析】試題分析:首先根據(jù)底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算15、(,1)或(﹣,1)【解析】
根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.將P的縱坐標代入函數(shù)解析式,求P點坐標即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標是1或-1.當y=1時,x1-1=1,解得x=±當y=-1時,x1-1=-1,方程無解故P點的坐標為()或(-)【點睛】此題注意應考慮兩種情況.熟悉直線和圓的位置關系應滿足的數(shù)量關系是解題的關鍵.16、x>4【解析】
分別解出不等式組中的每一個不等式,然后根據(jù)同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.三、解答題(共8題,共72分)17、(1)詳見解析;(2);(3)4<OC<1.【解析】
(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點,結合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設點M為Rt△APO的外心,則M為OA的中點,
∵OA=1,
∴OM=4,
∴當△APO的外心在扇形COD的內(nèi)部時,OM<OC,
∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關鍵.18、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱性確定出點B的坐標,然后設拋物線的解析式為y=a(x+3)(x-1),將點D的坐標代入求得a的值即可;(2)過點E作EF∥y軸,交AD與點F,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;(3)當AD為平行四邊形的對角線時.設點M的坐標為(-1,a),點N的坐標為(x,y),利用平行四邊形對角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對應的y值,然后依據(jù)=,可求得a的值;當AD為平行四邊形的邊時.設點M的坐標為(-1,a).則點N的坐標為(-6,a+5)或(4,a-5),將點N的坐標代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對稱軸為直線x=-1,∴B(-3,0),設拋物線的表達式為y=a(x+3)(x-1),將點D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達式為y=x2+2x-3;(2)過點E作EF∥y軸,交AD與點F,交x軸于點G,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當AD為平行四邊形的對角線時:設點M的坐標為(-1,a),點N的坐標為(x,y).∴平行四邊形的對角線互相平分,∴=,=,解得x=-2,y=5-a,將點N的坐標代入拋物線的表達式,得5-a=-3,解得a=8,∴點M的坐標為(-1,8),當AD為平行四邊形的邊時:設點M的坐標為(-1,a),則點N的坐標為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當點M的坐標為(-1,26)或(-1,16)或(-1,8)時,以點A,D,M,N為頂點的四邊形能成為平行四邊形.19、(1)見解析;(2)tan∠CED=【解析】
(1)欲證明,只要證明即可;(2)由,可得,設FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BD?BE=BC?BA,設AC=BC=x,則有,由此求出AC、CD即可解決問題.【詳解】(1)證明:如下圖,連接AE,∵AD是直徑,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下圖,連接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,設FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD?BE=BC?BA,設AC=BC=x,則有,∴,∴,∴,∴.【點睛】本題屬于圓的綜合題,涉及到三角形的相似,解直角三角形等相關考點,熟練掌握三角形相似的判定及解直角三角形等相關內(nèi)容是解決本題的關鍵.20、AD的長約為225m,大樓AB的高約為226m【解析】
首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數(shù)的定義可求得,然后根據(jù)∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【詳解】解:設大樓AB的高度為xm,
在Rt△ABC中,∵∠C=32°,∠BAC=92°,
∴,
在Rt△ABD中,,
∴,
∵CD=AC-AD,CD=96m,
∴,
解得:x≈226,∴
答:大樓AB的高度約為226m,AD的長約為225m.【點睛】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數(shù)形結合思想與方程思想的應用.21、(1),;(2)點的坐標為;(3)點的坐標為和【解析】
(1)根據(jù)二次函數(shù)的對稱軸公式,拋物線上的點代入,即可;(2)先求F的對稱點,代入直線BE,即可;(3)構造新的二次函數(shù),利用其性質(zhì)求極值.【詳解】解:(1)軸,,拋物線對稱軸為直線點的坐標為解得或(舍去),(2)設點的坐標為對稱軸為直線點關于直線的對稱點的坐標為.直線經(jīng)過點利用待定系數(shù)法可得直線的表達式為.因為點在上,即點的坐標為(3)存在點滿足題意.設點坐標為,則作垂足為①點在直線的左側時,點的坐標為點的坐標為點的坐標為在中,時,取最小值.此時點的坐標為②點在直線的右側時,點的坐標為同理,時,取最小值.此時點的坐標為綜上所述:滿足題意得點的坐標為和考點:二次函數(shù)的綜合運用.22、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】
(1)根據(jù)反比例函數(shù)圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數(shù)法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年刮墨刀項目資金申請報告代可行性研究報告
- 2025年度教育科技股權分配及資源共享協(xié)議模板
- 2025年度事業(yè)單位聘用合同書模板(保密協(xié)議)正式版
- 2025年度保密性產(chǎn)品研發(fā)與生產(chǎn)合作協(xié)議
- 2025年河南中醫(yī)藥大學單招職業(yè)技能測試題庫及答案一套
- 2025年農(nóng)村集體土地租賃與使用權轉(zhuǎn)讓協(xié)議
- 2025年度宅基地使用權流轉(zhuǎn)備案與監(jiān)管服務合同
- 二零二五年度電影演員跨界合作合同范本
- 咖啡廳垃圾運輸合作協(xié)議
- 2025年度新能源產(chǎn)業(yè)研發(fā)人工費合作協(xié)議
- 科創(chuàng)板知識題庫試題及答案
- UL1450標準中文版-2019電動空氣壓縮機真空泵和涂裝設備中文版第四版
- “互聯(lián)網(wǎng)+”大學生創(chuàng)新創(chuàng)業(yè)大賽計劃書一等獎
- 物業(yè)社區(qū)文化活動培訓
- 采購員工作總結
- 接處警流程培訓
- 2024年商丘職業(yè)技術學院單招職業(yè)技能測試題庫附答案
- 《法律法規(guī)常識講解》課件
- 《特種設備安全法》《特種設備安全監(jiān)察條例》解讀
- 防雷應急演練
- 學校機考考場改造方案
評論
0/150
提交評論