




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024年河南省中考數(shù)學預料卷3參考答案與試題解析
一、選擇題(每題只有一個正確選項,本題共10小題,每題3分,共30分)
1.(3分)-4的相反數(shù)是()
A.-4B.C.4D.
【分析】依據(jù)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù)可得答案.
【解答】解:-4的相反數(shù)是4,
故選:C.
【點評】本題考查了相反數(shù)的概念,熟記相反數(shù)的概念是解題的關鍵.
2.(3分)0001A型航母于2024年5月13日早晨離開碼頭進行首次海試,最大排水量約為
6萬5千噸,將6萬5千用科學記數(shù)法表示為()
A.6.5x10-4B.-6.5x104C.6.5x104D.65x104
【分析】科學記數(shù)法的表示形式為axlOn的形式,其中l(wèi)<|a|<10,n為整數(shù).確定n的值時,
要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的肯定值與小數(shù)點移動的位數(shù)相同.當原數(shù)
肯定值>10時,n是正數(shù);當原數(shù)的肯定值<1時,n是負數(shù).
【解答】解:65000=6.5x104,
故選:C.
【點評】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為axlOn的形式,其中
l<|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.
3.(3分)把圖1中的正方體的一角切下后擺在圖2所示的位置,則圖2中的幾何體的俯視圖
A.BC.D
【分析】依據(jù)從上面看得到的圖形是俯視圖,可得答案.
【解答】解:從上面看是一個正三角形,三條棱為實線.
故選:A.
【點評】本題主要考查了幾何體的三視圖,能將物體擺放的形式按“長對正,高平齊寬相等”
的規(guī)則畫出來是重點,要留意看到的線條用實線.
4.(3)下列計算正確的是()
A.B.;C.;D.
【分析】依據(jù)合并同類項法則、完全平方公式、積的乘方法則、同底數(shù)幕的乘法法則計算,
推斷即可.
【解答】解:,A錯誤;
,B錯誤;
,C正確;
>D錯誤;
故選:c.
【點評】本題主要考查整式的運算,解題的關鍵是駕馭塞的乘方、同類項概念、同底數(shù)嘉相
乘及合并同類項法則.
5.(3分)7與3日,某體育用品店實行了首屆電動平衡車大賽,其中8名選手某項得分如
下:
80,86,89,84,84,84,92,92
則這8名選手得分的眾數(shù)、中位數(shù)分別是()
A.85、85B.87、85C.85、86D.85、87
【答案】A.
【解析】眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),
,眾數(shù)是84;
把數(shù)據(jù)按從小到大依次排列,80,84,84,84,86,89,92,92
可得中位數(shù)=(84+86)+2=85;故選C.
【點評】此題主要考查了眾數(shù)和中位數(shù)的定義,正確把握相關定義是解題關鍵.
6.(3分)我國古代數(shù)學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三:
人出七,不足四,問人數(shù)、物價幾何?”意思是:現(xiàn)在有幾個人共同出錢去買件物品,假如每
人出8錢,則剩余3錢:假如每人出7錢,則差4錢.問有多少人,物品的價格是多少?設
有x人,物品的價格為y元,可列方程(組)為()
A.B.C.D.
【分析】設有x人,物品的價格為y元,依據(jù)所花總錢數(shù)不變列出方程即可.
【解答】解:設有x人,物品的價格為y元,
依據(jù)題意,可列方程:,
故選:D.
【點評】依據(jù)分析,找出題中的等量關系,代入設定的未知數(shù),列出方程即可.
7.(3分)已知關于x的一元二次方程有兩個實數(shù)根,a為正整數(shù),則符合條件的全部正整
數(shù)a的個數(shù)為()
A.6個B.5個C.4個D.3個
【分析】依據(jù)方程的系數(shù)結(jié)合根的判別式4K),即可得出於6,由a為正整數(shù),即可求出a
的值,將其相加即可得出結(jié)論.
【解答】解:b=4,c=a-3,關于x的一元二次方程有實數(shù)根
??,
Aa<6.
〈a為正整數(shù),且該方程的根都是整數(shù),
a=1,2,3,4,5,6
???共6個
故選:A.
【點評】本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a#))的根與
△=b2-4ac有如下關系:①當A>0時,方程有兩個不相等的兩個實數(shù)根;②當△=()時,方
程有兩個相等的兩個實數(shù)根;③當△<()時,方程無實數(shù)根.
8.(3分)下列四個圖案中,既是軸對稱圖形又是中心對稱圖形的是()
【分析】依據(jù)軸對稱以及中心對稱的概念對各選項分析推斷利用解除法求解.
【解答】
解:A、是軸對稱圖形,但不是中心對稱圖形,故本選項錯誤;
B、是中心對稱圖形,但不是軸對稱圖形,故本選項錯誤;
C、是軸對稱圖形,也是中心對稱圖形,故本選項正確;
D、是軸對稱圖形,但不是軸對稱圖形,故本選項錯誤.
故選:C.
【點評】本題主要考察了軸對稱圖形、中心對稱圖形的概念,以及概率的定義。軸對稱圖形
指的是沿著對稱軸折疊后,圖形兩旁的部分能完全重合;中心對稱圖形指的是一個圖形沿著
對稱中心旋轉(zhuǎn)180。后能與本身重合的圖形.
9.(3分)如圖,某同學學習尺規(guī)作圖后所留下的畫圖痕跡:
(1)作線段AB,分別以A,B為圓心,以AB長為半徑作弧,兩弧的交點為C;
(2)以C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;
(3)連接BD,BC.
下列說法正確的是()
C.點C是AABD的內(nèi)心D.sinA=
【分析】依據(jù)等邊三角形的判定方法,直角三角形的判定方法以及等邊三角形的性質(zhì),直角
三角形的性質(zhì)一一推斷即可;
解:由作圖可知:AC=AB=BC,
.?.△ABC是等邊三角形,
故NA=60。,sinA=,
故A,D錯誤
由作圖可知:CB=CA=CD,
,點C是小ABD的外接圓圓心,
故C錯誤
ABC是等邊三角形,
為AD邊中線,故
故選:C.
【點評】本題主要考查了尺規(guī)作圖,等邊三角形,直角三角形的相關學問。解題時候留意尺
規(guī)作圖的相關要點是推斷圖形形態(tài)的關鍵.
10.(3分)如圖所示:邊長分別為a和2a的兩個正方形,其中一邊在同一水平線上,小正
方形沿該水平線以自左向右勻速穿過大正方形,設穿過的時間為3兩各正方形重合部分的
面積為s,那么s與t的大致圖象應為()
A.B.C.D.
解:依據(jù)題意,設小正方形運動的速度為v,分三個階段;
①小正方形向右未完全穿入大正方形,重合部分的面積從。漸漸增大接近至1,
②小正方形穿入大正方形但未穿出大正方形,重合部分的面積為1,
③小正方形向右未完全穿入大正方形,重合部分的面積從1漸漸減小接近至0,
分析選項可得,A符合;
故選A.
點評:解決此類問題,留意將過程分成幾個階段,依次分析各個階段得改變狀況,進而綜合
可得整體得改變狀況.
二、細心填一填(本大題共5小題,每小題3分,滿分15分,請把答案填在答題卷相應題號
的橫線上)
11.(3分)計算:.
【答案】-5
【解答】解:
【點評】本題考查實數(shù)的運算、0整數(shù)指數(shù)幕、結(jié)合安排律計算是重點,而理解。次幕的意
義是關鍵.
12(3分)如圖,NACD是△ABC的外角,CE平分NACD,BE平分NABC,若NA=40。,
則NE等于()
A.20°B.25°C.30°D.35°
【答案】A
【解答】解:YCE平分NACD,BE平分NABC,
,ZECD=ZACD,ZEBC=ZABC,
ZACD是^ABC的外角,ZECD是^EBC的外角,
,NACD=NA+/ABC①,ZECD=ZE+ZEBC?
①-2義②得:ZA=2ZE
VZA=40°,
,NE=20。
故選:A.
【點評】此題主要考查了角平分線以及三角形的外角的相關學問,三角形的外角等于不相鄰
的兩個內(nèi)角的和,正確把握題干條件列出等式變形后求差即可.
13.不等式組它的解集為.
【答案】解:
解不等式①得:
解不等式②得:,
故不等式組的解集為.
14.如圖,在圓心角為90。的扇形ABC中,半徑BC=4,E為的中點,D、E分別是BC、
BA的中點,則圖中陰影部分的面積為.
【分析】
【解答】
如解析圖所示,原圖①是軸對稱圖形,陰影部分可拼成如圖②的狀況,
故陰影的面積等于45。的扇形面積減去一個等腰直角aFBG的面積.
?,
得
.??陰影部分的面積為.
【點評】本題考察了軸對稱學問,三角形面積以及扇形面積計算公式.在計算的時候通過軸
對稱轉(zhuǎn)換將陰影面積進行整合是關鍵。
15.如圖,RtAABC中,AB=5,BC=4,ZC=90°,將△ABC折疊,使B點與AC的中
點F重合,折痕為DE,則線段EF的長為()
A.B.C.4D.5
【解析】
由勾股定理得BC=3,由折疊可得△BED^AFED,即BE=EF,
可設BE=x,貝!JEF=x,EC=4—x,
由D是BC的中點可知FC=,
在RtAECF中,
由EC2+FC2=EF2,得,
解得x=.
/.EF=.
三、計算題(本大題共8題,共75分,請仔細讀題)
16.(8分)先化簡再求值:,其中;
解:
當時,原式.
【點評】本題考查分式的運算,解題的關鍵是嫻熟運用因式分解以及分式的運算法則,代入
求值肯定要留意將分母有理化.
17.(9分)網(wǎng)絡時代,新興詞匯層出不窮.為了解大眾對網(wǎng)絡詞匯的理解,某愛好小組實
行了一個“我是路人甲,,的調(diào)查活動:選取四個熱詞A:“還是蠻拼的嘛“,B:“原來是醬紫的”,
C:“扎心了,老鐵”,D:“金磚四國”在街道上對流淌人群進行了抽樣調(diào)查,要求被調(diào)查的每
位只能勾選一個最熟識的熱詞,依據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你依據(jù)統(tǒng)計圖供應的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了名路人.
(2)補全條形統(tǒng)計圖中.
(3)條形圖中的a=,扇形圖中的b=.
【分析】(1)視察可知條形圖和扇形圖中數(shù)據(jù)完備的是A,故可推想樣本容量;
(2)依據(jù)B中的人數(shù)為75,可知其所占的圓心角度數(shù)為90。,進而計算出C所占的圓心角
度數(shù)為18°,計算比例可得C的人數(shù)為15人.
(3)由(2)知道扇形圖中的B所占的圓心角為90。;D所占的圓心角為108。,得出其所占
比例為30%,計算D人數(shù)為90名.
【解答】解:
(1).
(2)C所占的圓心角的度數(shù)為
勾選C詞所占的人數(shù)為,故補全統(tǒng)計圖如下:
(3)由(2)知道b=90,勾選D詞的所占圓心角度數(shù)為108。,故其人數(shù)為
,故a=90.
【點評】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖
中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清晰地表示出每個項目的數(shù)據(jù);扇形統(tǒng)
計圖中的圓心角度數(shù)間接反映部分占總體的百分比大小.
18.(9分))在矩形AODB中,AB=6,BD=4,分別以OD,OA所在直線為x軸和y軸,
建立如圖所示的平面直角坐標系.C為AB中點,過點C的反比例函數(shù)y=(k>0)的圖像與
BD邊交于點E.
⑴求反比例函數(shù)解析式;
(2)求4OEC的面積.
【分析】(1)由圖知點C的坐標是(3,4)代入解析式,即可求得反比例函數(shù)解析式為.
(2)過點E,點E的橫坐標為4,故得點E的縱坐標為3;在知道線段BC,BE,DE的長度狀況
下,進而用切割法可得AOEC的面積.
解:(1):C點是AB邊中點,AB=6,BD=4,
得點C的坐標為(3,4)
C是反比例函數(shù)y=(k>0)圖像上的點,
,k=3x4=12,
故反比例函數(shù)的解析式為;
(,2)由題意知過點E,
?.?點E的橫坐標為4,
.,.點E的縱坐標為12-4=3,
故點E的坐標為(4,3)
,BE=1,DE=3
【點評】本題是反比例函數(shù)綜合題,考察的學問點有反比例函數(shù)的應用、三角形的面積、切
割法等學問點,在這道題里知道將線段的長度轉(zhuǎn)化為點的坐標是重點,而合理運用切割法則
是解題的關鍵.
19.(9分)
如圖,AEDF為。O的內(nèi)接三角形,F(xiàn)B平分NDFE,連接BD,過點B作直線AC,使NEBC
=ZBFE.(1)求證:BD2=BGBF;(2)求證:直線AC是。。的切線;
【分析】(1)要證明BD2=BG-BF,首先要證明線段所在的△相像,然后利用對比邊成比
例即可得出結(jié)論,在這一問中說明NBDE=NDFB是解題的關鍵.
(2)證明切線須要兩個條件:過半徑外端點,且與半徑垂直.在本題中沒有過切點的半徑,
也沒有垂直的必要條件,因此合理添加協(xié)助線證明是唯一途徑.
【解答】
證明:(1)如圖,
?;FB平分NDFE,
/.ZDFB=ZEFB.
又:NBDE=NEFB,
.*.ZBDE==ZDFB,
在4BDG和ABFD中,
VZBDE=ZDFB,ZDBF=ZDBF,
/.△BDG^ABFD,
即BD2=BG-BF;
證明:如備用圖,連接BO,并延長交。0于點P,連接PE;
?;/P與/BFE為同弧所對圓周角,
/.ZP=ZBFE,
:NEBC=NBFE,
.*.ZEBC=ZP,
YDG為。O的直徑,
NPEB=90。,
.\ZP+ZPBE=90°,
ZEBC+ZPBE=90°,
故OBJ_AC,
直線AC是。O的切線.
20.(9分)如圖是某游樂公司修建的輪滑滑道草圖,設計師從土臺上直立大樹的底端F動
身,水平滑行10米到E點,沿著一個坡比為8:15的斜坡下行8.5米到B點,然后慣性滑行
5.5米到C點停止,此時測得樹梢P點的仰角為24°,若A,B,C,D均在始終線上,請你依據(jù)圖
中數(shù)據(jù)試求樹高多少米?
(參考數(shù)據(jù):sin24°~0.41,cos24°?0.91,tan24°=0.45)
【分析】作EG,AB,垂足為G.首先解直角三角形RtAEGB,求出EG,BG,再依據(jù)
tan240=,構(gòu)建方程即可解決問題;
【解答】解:作£6,人8,垂足為6.
在RtAEGB,
V,設EG=8k,BG=15k,
,CD=8.5(米),
/.(8k)2+(15k)2=8.52,
/?k=,
,EG=4(米),BG=7.5(米),
?..四邊形FAGE是矩形,
:.AF=EG=4(米),EF=AG=10(米),AC=10+7.5+5.5=22(米),
在RtAPAC中,tan24°=,
??,
/.AB=5.9(米),
答:樹的高度約是5.9米.
【點評】本題考察的是勾股定理、銳角三角函數(shù)以及坡比的相關學問,構(gòu)造協(xié)助線計算出樹
的底部距離水平面的距離是重點,而合理的利用比例列出等式計算是關鍵.
21.(10分)小王創(chuàng)業(yè)開設一出售某品牌手套的小網(wǎng)店,定價為每雙40元.物價部門規(guī)定
其銷售單價不高于70元,不低于40元.經(jīng)一段時間的銷售發(fā)覺日銷售量y(雙)是銷售單價
x(元)存在肯定的數(shù)量關系如下表(每天還要支付其他費用320元).
銷量y(雙)100120140
售價X(元)605040
(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求小王的網(wǎng)店日獲利W(元)與銷售單價x(元)之間的函數(shù)關系式;
(3)請問小王將售價定為多少日獲利最多,最多為多少元?
【分析】
(1)依據(jù)圖表可知圖中的函數(shù)與自變量存在等差數(shù)列關系,故函數(shù)為一次函數(shù),設函數(shù)解
析式為y=kx+b,待定系數(shù)即可得解.
(2)利潤等于單價與所售手套數(shù)量的乘積,整理后化為頂點式或者一般式即可.
(3)將函數(shù)化為頂點式,即可求出最大值.
【解答】
解:(1)設y與x的函數(shù)關系式為丫=1?+卜依據(jù)題意,得解得,
??;
(2)由題意,得.?.所求函數(shù)的關系式為;
(3)
?9
當時,W隨x的增大而增大
又,:
...當x=70時,W有最大值為2030,
,當銷售單價為70元時,該公司日獲利最大,最大利潤為2030元.
【點評】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、二次函數(shù)的性質(zhì)等學問點.本題
中依據(jù)待定系數(shù)法列出關系式是重點,而依據(jù)二次函數(shù)的性質(zhì)結(jié)合自變量的取值范圍求出最
值是關鍵.
22.(11分)如圖,△ABC和AADE是有公共頂點的等腰直角三角形,ZBAC=ZDAE=90°,
BD,CE的交于點P.
(1)把△ABC繞點A旋轉(zhuǎn)到圖1,BD,CE的關系是(“相等”或者“不相等”);
簡要說明理由
(2)若AB=5,AD=3,把△ABC繞點A旋轉(zhuǎn),當NEAC=90。時,在圖2中作出旋轉(zhuǎn)轉(zhuǎn)后的
圖形,PD=,簡潔寫出計算過程.
(3)寫出旋轉(zhuǎn)過程中線段PD最小值為,最大值為.
【分析】(1)欲證明BD=CE,只要證明△ABD0Z2\ACE即可.
(2)依據(jù)△AEC和△ADB全等,可得/AEC和/ADB相等,然后依據(jù)對頂角
NACE=NPCD;可得△ACE^APCD,代入數(shù)據(jù)可求得PD.
(3)如圖3中,以A為圓心AC為半徑畫圓,當EC在。A下方與。A相切時,PD的值最
??;當EC在。A上方與。A相切時,PD的值最大.
【解答】(1)相等,理由如下:
圖1中,
?.?△人8(2和4ADE是等腰直角三角形,ZBAC=ZDAE=90°,
,AB=AC,AD=AE,ZDAB=ZCAE,
.二△ADBg△AEC,
:.BD=CE.
(2)作出旋轉(zhuǎn)后的圖形如下:
,ZEAC=90°,
.CE=,
VZPDA=ZAEC,ZPCD=ZACE,
.,.△PCD^AACE.
(3).如圖3中,以A為圓心AC為半徑畫圓,當EC在。A下方與。A相切時,PD的值最
??;當EC在。A右上方與。A相切時,PD的值最大.
如圖3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家用紡織品的產(chǎn)品差異化與競爭優(yōu)勢考核試卷
- 智能車載設備的故障預測考核試卷
- 工藝美術品的商業(yè)模式創(chuàng)新考核試卷
- 專業(yè)技術培訓引領行業(yè)變革考核試卷
- 家居裝飾裝修中的施工質(zhì)量控制考核試卷
- 城市軌道交通的旅客負擔與收入分析考核試卷
- 技術標準制定考核試卷
- 工業(yè)控制計算機在電力系統(tǒng)的應用考核試卷
- 學校租賃土地合同范本
- 公司并購簽約合同范本
- 日本文化的基本特征(日本文化概論)
- 十年-(鋼琴譜-原版)
- C1駕照科目一模擬考試練習題1000【附答案解析】
- 建筑施工企業(yè)負責人帶班檢查記錄表
- YY/T 0064-2016醫(yī)用診斷X射線管組件電氣及負載特性
- GB/T 29790-2020即時檢驗質(zhì)量和能力的要求
- GB/T 12470-2018埋弧焊用熱強鋼實心焊絲、藥芯焊絲和焊絲-焊劑組合分類要求
- GB/T 1036-2008塑料-30 ℃~30 ℃線膨脹系數(shù)的測定石英膨脹計法
- 100~200米超高層結(jié)構(gòu)布置案例集錦
- 紙杯變變變-課件
- DL∕T 5801-2019 抗硫酸鹽侵蝕混凝土應用技術規(guī)程
評論
0/150
提交評論