版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省黃梅縣2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.2019年4月份,某市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,352.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是()A.1 B.2 C.3 D.43.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°4.下列運(yùn)算結(jié)果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a25.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形6.估計(jì)的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間7.如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°8.將弧長為2πcm、圓心角為120°的扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高是()A.cm B.2cm C.2cm D.cm9.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點(diǎn);丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號(hào)[→]表示[直線前進(jìn)],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進(jìn)路線長度的大小關(guān)系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲10.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或611.在0.3,﹣3,0,﹣這四個(gè)數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣12.如圖,在矩形ABCD中,P、R分別是BC和DC上的點(diǎn),E、F分別是AP和RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動(dòng),而點(diǎn)R不動(dòng)時(shí),下列結(jié)論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點(diǎn)P的位置有關(guān)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.不等式組的解集為_____.14.如圖,在圓O中,AB為直徑,AD為弦,過點(diǎn)B的切線與AD的延長線交于點(diǎn)C,AD=DC,則∠C=________度.15.如果方程x2-4x+3=0的兩個(gè)根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.16.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.17.已知關(guān)于x的一元二次方程(a-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是_______________.18.如果反比例函數(shù)的圖象經(jīng)過點(diǎn)A(2,y1)與B(3,y2),那么的值等于_____________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某汽車廠計(jì)劃半年內(nèi)每月生產(chǎn)汽車20輛,由于另有任務(wù),每月上班人數(shù)不一定相等,實(shí)每月生產(chǎn)量與計(jì)劃量相比情況如下表(增加為正,減少為負(fù))生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?半年內(nèi)總生產(chǎn)量是多少?比計(jì)劃多了還是少了,增加或減少多少?20.(6分)在汕頭市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,電子白板的價(jià)格是電腦的3倍,購買5臺(tái)電腦和10臺(tái)電子白板需要17.5萬元,求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?21.(6分)我市某中學(xué)決定在八年級(jí)陽光體育“大課間”活動(dòng)中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?(2)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;(3)若調(diào)查到喜歡“立定跳遠(yuǎn)”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.22.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).23.(8分)(1)觀察猜想如圖①點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請(qǐng)直接寫出BD的長.24.(10分)已知P是⊙O外一點(diǎn),PO交⊙O于點(diǎn)C,OC=CP=2,弦AB⊥OC,∠AOC的度數(shù)為60°,連接PB.求BC的長;求證:PB是⊙O的切線.25.(10分)為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?26.(12分)如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動(dòng)點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PE最長?此時(shí)PE等于多少?(3)如果平行于x軸的動(dòng)直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.27.(12分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊(duì)欲改變堤壩的坡面,使得坡面的坡角,則此時(shí)應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到米)(參考數(shù)據(jù):,,)
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.2、D【解析】
由拋物線的對(duì)稱軸的位置判斷ab的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】①∵拋物線對(duì)稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負(fù)半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac>0,故③正確;④當(dāng)x=﹣1時(shí),y>0,∴a﹣b+c>0,故④正確.故選D.【點(diǎn)睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸和拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.3、A【解析】
根據(jù)圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角(就是和它相鄰的內(nèi)角的對(duì)角).4、C【解析】
根據(jù)多項(xiàng)式除以單項(xiàng)式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項(xiàng)法則計(jì)算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項(xiàng)計(jì)算錯(cuò)誤;B、(-a2)?a3=-a5,此選項(xiàng)計(jì)算錯(cuò)誤;C、(-2x2)3=-8x6,此選項(xiàng)計(jì)算正確;D、4a2-(2a)2=4a2-4a2=0,此選項(xiàng)計(jì)算錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查整式的運(yùn)算,解題的關(guān)鍵是掌握多項(xiàng)式除以單項(xiàng)式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項(xiàng)法則.5、D【解析】
根據(jù)全等三角形的性質(zhì)可知A,B,C命題均正確,故選項(xiàng)均錯(cuò)誤;D.錯(cuò)誤,全等三角也可能是直角三角,故選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查全等三角形的性質(zhì),兩三角形全等,其對(duì)應(yīng)邊和對(duì)應(yīng)角都相等.6、C【解析】
根據(jù),可以估算出位于哪兩個(gè)整數(shù)之間,從而可以解答本題.【詳解】解:∵即
故選:C.【點(diǎn)睛】本題考查估算無理數(shù)的大小,解題的關(guān)鍵是明確估算無理數(shù)大小的方法.7、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.8、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運(yùn)用勾股定理即可求解圓錐的高.【詳解】解:設(shè)圓錐母線長為Rcm,則2π=,解得R=3cm;設(shè)圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點(diǎn)睛】本題考查了圓錐的概念和弧長的計(jì)算.9、A【解析】分析:由角的度數(shù)可以知道2、3中的兩個(gè)三角形的對(duì)應(yīng)邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據(jù)以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個(gè)三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點(diǎn)睛:本題考查了的知識(shí)點(diǎn)是平行四邊形的性質(zhì),解答本題的關(guān)鍵是利用相似三角形的平移,求得線段的關(guān)系.10、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時(shí),t-1=6,解得t=7;當(dāng)t<1時(shí),2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.11、A【解析】
根據(jù)正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.【點(diǎn)睛】本題考查實(shí)數(shù)比較大小,解題的關(guān)鍵是正確理解正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),本題屬于基礎(chǔ)題型.12、C【解析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點(diǎn):1、矩形性質(zhì),2、勾股定理,3、三角形的中位線二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、﹣2≤x<【解析】
根據(jù)解不等式的步驟從而得到答案.【詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【點(diǎn)睛】本題主要考查了解不等式,解本題的要點(diǎn)在于分別求解①,②不等式,從而得到答案.14、1【解析】
利用圓周角定理得到∠ADB=90°,再根據(jù)切線的性質(zhì)得∠ABC=90°,然后根據(jù)等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數(shù).【詳解】解:∵AB為直徑,∴∠ADB=90°,∵BC為切線,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC為等腰直角三角形,∴∠C=1°.故答案為1.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.也考查了等腰直角三角形的判定與性質(zhì).15、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當(dāng)3是直角邊時(shí),∵△ABC最小的角為A,∴tanA=;②當(dāng)3是斜邊時(shí),根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.16、1【解析】原方程為3x2?6x+1=0,二次項(xiàng)系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.17、a<2且a≠1.【解析】
利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【詳解】試題解析:∵關(guān)于x的一元二次方程(a-1)x2-2x+l=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個(gè)不等式得,a<2,又∵二次項(xiàng)系數(shù)是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【點(diǎn)睛】本題考查的是一元二次方程根的判別式,根據(jù)方程有兩不等的實(shí)數(shù)根,得到判別式大于零,求出a的取值范圍,同時(shí)方程是一元二次方程,二次項(xiàng)系數(shù)不為零.18、【解析】分析:由已知條件易得2y1=k,3y2=k,由此可得2y1=3y2,變形即可求得的值.詳解:∵反比例函數(shù)的圖象經(jīng)過點(diǎn)A(2,y1)與B(3,y2),∴2y1=k,3y2=k,∴2y1=3y2,∴.故答案為:.點(diǎn)睛:明白:若點(diǎn)A和點(diǎn)B在同一個(gè)反比例函數(shù)的圖象上,則是解決本題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)9輛;(2)半年內(nèi)總生產(chǎn)量是121輛.比計(jì)劃多了1輛.【解析】
(1)由表格可知,四月生產(chǎn)最多為:20+4=24;六月最少為:20-5=15,兩者相減即可求解;
(2)把每月的生產(chǎn)量加起來即可,然后與計(jì)劃相比較.【詳解】(1)+4-(-5)=9(輛)答:生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)9輛.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(輛),因?yàn)?21>120121-120=1(輛)答:半年內(nèi)總生產(chǎn)量是121輛.比計(jì)劃多了1輛.【點(diǎn)睛】此題主要考查正負(fù)數(shù)在實(shí)際生活中的應(yīng)用,所以學(xué)生在學(xué)這一部分時(shí)一定要聯(lián)系實(shí)際,此題主要考查有理數(shù)的加減運(yùn)算法則.20、每臺(tái)電腦0.5萬元;每臺(tái)電子白板1.5萬元.【解析】
先設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元,根據(jù)電子白板的價(jià)格是電腦的3倍,購買5臺(tái)電腦和10臺(tái)電子白板需要17.5萬元列出方程組,求出x,y的值即可.【詳解】設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元.根據(jù)題意,得:解得,答:每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是讀懂題意,找出之間的數(shù)量關(guān)系,列出二元一次方程組.21、(1)50名;(2)補(bǔ)圖見解析;(3)剛好抽到同性別學(xué)生的概率是【解析】試題分析:(1)由題意可得本次調(diào)查的學(xué)生共有:15÷30%;(2)先求出C的人數(shù),再求出C的百分比即可;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與剛好抽到同性別學(xué)生的情況,再利用概率公式即可求得答案.試題解析:(1)根據(jù)題意得:15÷30%=50(名).答;在這項(xiàng)調(diào)查中,共調(diào)查了50名學(xué)生;(2)圖如下:(3)用A表示男生,B表示女生,畫圖如下:共有20種情況,同性別學(xué)生的情況是8種,則剛好抽到同性別學(xué)生的概率是.22、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時(shí)AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時(shí),AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).23、(1)BC=BD+CE,(2);(3).【解析】
(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設(shè)AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結(jié)論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設(shè)AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點(diǎn)睛】考查全等三角形的判定與性質(zhì),勾股定理,二元一次方程組的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.24、(1)BC=2;(2)見解析【解析】試題分析:(1)連接OB,根據(jù)已知條件判定△OBC的等邊三角形,則BC=OC=2;(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.(1)解:如圖,連接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等邊三角形,∴BC=OC.又OC=2,∴BC=2;(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半徑,∴PB是⊙O的切線.考點(diǎn):切線的判定.25、(1)甲、乙兩種套房每套提升費(fèi)用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時(shí),y最小值為2090萬元.【解析】
(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費(fèi)用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論.【詳解】(1)設(shè)乙種套房提升費(fèi)用為x萬元,則甲種套房提升費(fèi)用為(x﹣3)萬元,則,解得x=1.經(jīng)檢驗(yàn):x=1是分式方程的解,答:甲、乙兩種套房每套提升費(fèi)用為25、1萬元;(2)設(shè)甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設(shè)提升兩種套房所需要的費(fèi)用為y萬元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當(dāng)a取最大值2時(shí),即方案三:甲種套房提升2套,乙種套房提升30套時(shí),y最小值為2090萬元.【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì)的運(yùn)用,列分式方程解實(shí)際問題的運(yùn)用,列一元一次不等式組解實(shí)際問題的運(yùn)用.解答時(shí)建立方程求出甲,乙兩種套房每套提升費(fèi)用是關(guān)鍵,是解答第二問的必要過程.26、(1)y=-x2-2x+1,C(1,0)(2)當(dāng)t=-2時(shí),線段PE的長度有最大值1,此時(shí)P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《急救護(hù)理困擾》課件
- 《護(hù)理教育學(xué)輔導(dǎo)》課件
- 【大學(xué)課件】土木工程概論 土木工程材料
- 高端裝備數(shù)字化智能工廠項(xiàng)目可行性研究報(bào)告寫作模板-備案審批
- 《莫言英文簡介》課件
- 單位人力資源管理制度匯編大全十篇
- 甘肅省武威市涼州區(qū)2024-2025學(xué)年高一上學(xué)期期末考試歷史試卷(含答案)
- 循環(huán)經(jīng)濟(jì)產(chǎn)業(yè)園雨污分流改造及再生水回用項(xiàng)目可行性研究報(bào)告寫作模板-備案審批
- 單位管理制度收錄大合集【職工管理篇】
- 【課件】大學(xué)課程演進(jìn)的回顧與展望
- 學(xué)生管理教育課件
- 物業(yè)經(jīng)理轉(zhuǎn)正述職
- 貿(mào)易崗位招聘面試題及回答建議(某大型國企)2025年
- 世界職業(yè)院校技能大賽高職組“關(guān)務(wù)實(shí)務(wù)組”賽項(xiàng)參考試題及答案
- 高中歷史教師資格考試面試試題及解答參考(2024年)
- 銀行貸款房產(chǎn)抵押合同樣本
- 北師大版(2024新版)生物七年級(jí)上冊(cè)期末考點(diǎn)復(fù)習(xí)提綱
- 期末 試題 -2024-2025學(xué)年人教PEP版英語六年級(jí)上冊(cè) (含答案)
- 2024年理論中心組學(xué)習(xí)心得體會(huì)模版(2篇)
- 2024年傳媒公司總結(jié)及下半年規(guī)劃范文(2篇)
- 建設(shè)項(xiàng)目環(huán)境保護(hù)管理?xiàng)l例
評(píng)論
0/150
提交評(píng)論