2022屆廣東省廣州市增城區(qū)初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
2022屆廣東省廣州市增城區(qū)初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
2022屆廣東省廣州市增城區(qū)初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
2022屆廣東省廣州市增城區(qū)初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
2022屆廣東省廣州市增城區(qū)初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆廣東省廣州市增城區(qū)初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.上體育課時,小明5次投擲實心球的成績如下表所示,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.02.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.3.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+24.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°5.若一個正多邊形的每個內角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.96.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–27.2014年底,國務院召開了全國青少年校園足球工作會議,明確由教育部正式牽頭負責校園足球工作.2018年2月1日,教育部第三場新春系列發(fā)布會上,王登峰司長總結前三年的工作時提到:校園足球場地,目前全國校園里面有5萬多塊,到2020年要達到85000塊.其中85000用科學記數(shù)法可表示為()A.0.85105 B.8.5104 C.8510-3 D.8.510-48.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤49.將下列各選項中的平面圖形繞軸旋轉一周,可得到如圖所示的立體圖形的是()A. B. C. D.10.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.12.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.13.如圖,四邊形OABC中,AB∥OC,邊OA在x軸的正半軸上,OC在y軸的正半軸上,點B在第一象限內,點D為AB的中點,CD與OB相交于點E,若△BDE、△OCE的面積分別為1和9,反比例函數(shù)y=的圖象經(jīng)過點B,則k=_______.14.如果將拋物線平移,使平移后的拋物線頂點坐標為,那么所得新拋物線的表達式是__________.15.若關于x的方程有兩個相等的實數(shù)根,則m的值是_________.16.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數(shù)y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.三、解答題(共8題,共72分)17.(8分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.18.(8分)學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.19.(8分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.20.(8分)如果a2+2a-1=0,求代數(shù)式的值.21.(8分)已知動點P以每秒2

cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6

cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?22.(10分)如圖,曲線BC是反比例函數(shù)y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),拋物線y=﹣x2+2bx的頂點記作A.(1)求k的值.(2)判斷點A是否可與點B重合;(3)若拋物線與BC有交點,求b的取值范圍.23.(12分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.24.為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).2、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關鍵在于對知識點的理解和把握.3、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.4、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結合折疊的性質可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關矩形折疊的問題,熟悉“矩形的四個內角都是直角”和“折疊的性質”是正確解答本題的關鍵.5、A【解析】

根據(jù)正多邊形的外角與它對應的內角互補,得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點睛】本題考查了正多邊形的外角與它對應的內角互補的性質;也考查了多邊形外角和為360度以及正多邊形的性質.6、C【解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.7、B【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,等于這個數(shù)的整數(shù)位數(shù)減1.【詳解】解:85000用科學記數(shù)法可表示為8.5×104,

故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.9、A【解析】分析:面動成體.由題目中的圖示可知:此圓臺是直角梯形轉成圓臺的條件是:繞垂直于底的腰旋轉.詳解:A、上面小下面大,側面是曲面,故本選項正確;B、上面大下面小,側面是曲面,故本選項錯誤;C、是一個圓臺,故本選項錯誤;D、下面小上面大側面是曲面,故本選項錯誤;故選A.點睛:本題考查直角梯形轉成圓臺的條件:應繞垂直于底的腰旋轉.10、C【解析】

作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據(jù)角平分線的性質得到OD=OE=OF,根據(jù)三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,

∴OD=OE=OF,

∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,

故選C.【點睛】考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構建出與已知和所求相關的直角三角形是解答此題的關鍵.12、10%【解析】

本題可設這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎.13、16【解析】

根據(jù)題意得S△BDE:S△OCE=1:9,故BD:OC=1:3,設D(a,b)則A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【詳解】解:設D(a,b)則A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的,∴S△OCE=3ba×=9解得ab=8k=a×2b=2ab=2×8=16故答案為16.【點睛】此題利用了:①過某個點,這個點的坐標應適合這個函數(shù)解析式;②所給的面積應整理為和反比例函數(shù)上的點的坐標有關的形式.14、.【解析】

平移不改變拋物線的開口方向與開口大小,即解析式的二次項系數(shù)不變,根據(jù)拋物線的頂點式可求拋物線解析式.【詳解】∵原拋物線解析式為y=1x1,頂點坐標是(0,0),平移后拋物線頂點坐標為(1,1),∴平移后的拋物線的表達式為:y=1(x﹣1)1+1.故答案為:y=1(x﹣1)1+1.【點睛】本題考查了拋物線的平移與解析式變化的關系.關鍵是明確拋物線的平移實質上是頂點的平移,能用頂點式表示平移后的拋物線解析式.15、m=-【解析】

根據(jù)題意可以得到△=0,從而可以求得m的值.【詳解】∵關于x的方程有兩個相等的實數(shù)根,∴△=,解得:.故答案為.16、1.【解析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標是(b,0),設A的坐標是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數(shù)綜合題,用到的知識點有:一次函數(shù)的平移規(guī)律,一次函數(shù)與反比例函數(shù)的交點坐標,利用了轉化及方程的思想,其中利用平移的規(guī)律表示出y=x平移后的解析式是解答本題的關鍵.三、解答題(共8題,共72分)17、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】

(1)根據(jù)項目B的人數(shù)以及百分比,即可得到這次調查的市民人數(shù),據(jù)此可得項目A,C的百分比;(2)根據(jù)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖;(3)根據(jù)全市總人數(shù)乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數(shù).【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.18、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據(jù)要求利用全等三角形的判定和性質畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質、多邊形內角和、角平分線的性質、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關鍵。19、(1)證明過程見解析;(2)【解析】

(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定20、1【解析】==1.故答案為1.21、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】

(1)根據(jù)題意得:動點P在BC上運動的時間是4秒,又由動點的速度,可得BC的長;(2)由(1)可得BC的長,又由AB=6cm,可以計算出△ABP的面積,計算可得a的值;(3)分析圖形可得,甲中的圖形面積等于AB×AF-CD×DE,根據(jù)圖象求出CD和DE的長,代入數(shù)據(jù)計算可得答案,(4)計算BC+CD+DE+EF+FA的長度,又由P的速度,計算可得b的值.【詳解】(1)由圖象知,當t由0增大到4時,點P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由圖象知CD=4㎝,DE=6㎝,則EF=2㎝,AF=14㎝∴圖1中的圖象面積為6×14-4×6=60㎝2;(4)圖1中的多邊形的周長為(14+6)×2=40㎝b=(40-6)÷2=17秒.22、(1)12;(2)點A不與點B重合;(3)【解析】

(1)把B、C兩點代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,從而求得k的值;(2)由拋物線解析式得到頂點A(b,b2),如果點A與點B重合,則有b=4,且b2=3,顯然不成立;(3)當拋物線經(jīng)過點B(4,3)時,解得,b=,拋物線右半支經(jīng)過點B;當拋物線經(jīng)過點C,解得,b=,拋物線右半支經(jīng)過點C;從而求得b的取值范圍為≤b≤.【詳解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函數(shù)的圖象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論