2022屆河北石家莊市長安區(qū)中考數學猜題卷含解析_第1頁
2022屆河北石家莊市長安區(qū)中考數學猜題卷含解析_第2頁
2022屆河北石家莊市長安區(qū)中考數學猜題卷含解析_第3頁
2022屆河北石家莊市長安區(qū)中考數學猜題卷含解析_第4頁
2022屆河北石家莊市長安區(qū)中考數學猜題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆河北石家莊市長安區(qū)中考數學猜題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.2.某商品的標價為200元,8折銷售仍賺40元,則商品進價為()元.A. B. C. D.3.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.4.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.5.對假命題“任何一個角的補角都不小于這個角”舉反例,正確的反例是()A.∠α=60°,∠α的補角∠β=120°,∠β>∠αB.∠α=90°,∠α的補角∠β=90°,∠β=∠αC.∠α=100°,∠α的補角∠β=80°,∠β<∠αD.兩個角互為鄰補角6.如圖,平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數y=的圖象經過點D,則k值為()A.﹣14 B.14 C.7 D.﹣77.今年,我省啟動了“關愛留守兒童工程”.某村小為了了解各年級留守兒童的數量,對一到六年級留守兒童數量進行了統(tǒng)計,得到每個年級的留守兒童人數分別為10,15,10,17,18,1.對于這組數據,下列說法錯誤的是()A.平均數是15 B.眾數是10 C.中位數是17 D.方差是8.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=29.如圖所示的工件,其俯視圖是()A. B. C. D.10.小華和小紅到同一家鮮花店購買百合花與玫瑰花,他們購買的數量如下表所示,小華一共花的錢比小紅少8元,下列說法正確的是()百合花玫瑰花小華6支5支小紅8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元二、填空題(共7小題,每小題3分,滿分21分)11.若a﹣3有平方根,則實數a的取值范圍是_____.12.已知方程的一個根為1,則的值為__________.13.分解因式:3ax2﹣3ay2=_____.14.如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長等于_____.15.如圖,在△ABC中,點E,F(xiàn)分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.16.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.17.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設甲每小時搬運xkg貨物,則可列方程為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過點D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線;(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.19.(5分)如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點A、B、C、D、M、N均在同一平面內,CM∥AN).求燈桿CD的高度;求AB的長度(結果精確到0.1米).(參考數據:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)20.(8分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結果都保留根號).21.(10分)如圖,已知三角形ABC的邊AB是0的切線,切點為B.AC經過圓心0并與圓相交于點D,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分∠ACE;(2)若BE=3,CE=4,求O的半徑.22.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.23.(12分)如圖,在每個小正方形的邊長為1的網格中,點A、B、C均在格點上.(I)AC的長等于_____.(II)若AC邊與網格線的交點為P,請找出兩條過點P的直線來三等分△ABC的面積.請在如圖所示的網格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).24.(14分)已知:如圖,四邊形ABCD的對角線AC和BD相交于點E,AD=DC,DC2=DE?DB,求證:(1)△BCE∽△ADE;(2)AB?BC=BD?BE.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題解析:如圖所示:設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【點睛】本題考查了解直角三角形、含30°角的直角三角形的性質、等腰三角形的性質、三角函數等,通過作輔助線求出AM是解決問題的關鍵.2、B【解析】

設商品進價為x元,則售價為每件0.8×200元,由利潤=售價-進價建立方程求出其解即可.【詳解】解:設商品的進價為x元,售價為每件0.8×200元,由題意得0.8×200=x+40解得:x=120答:商品進價為120元.故選:B.【點睛】此題考查一元一次方程的實際運用,掌握銷售問題的數量關系利潤=售價-進價,建立方程是關鍵.3、A【解析】試題解析:試題解析:根據軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做對稱中心.4、A【解析】

根據左視圖的概念得出各選項幾何體的左視圖即可判斷.【詳解】解:A選項幾何體的左視圖為;

B選項幾何體的左視圖為;

C選項幾何體的左視圖為;

D選項幾何體的左視圖為;

故選:A.【點睛】本題考查由三視圖判斷幾何體,解題的關鍵是熟練掌握左視圖的概念.5、C【解析】熟記反證法的步驟,然后進行判斷即可.

解答:解:舉反例應該是證明原命題不正確,即要舉出不符合敘述的情況;

A、∠α的補角∠β>∠α,符合假命題的結論,故A錯誤;

B、∠α的補角∠β=∠α,符合假命題的結論,故B錯誤;

C、∠α的補角∠β<∠α,與假命題結論相反,故C正確;

D、由于無法說明兩角具體的大小關系,故D錯誤.

故選C.6、B【解析】過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(7,2),∴k,故選B.7、C【解析】

解:中位數應該是15和17的平均數16,故C選項錯誤,其他選擇正確.故選C.【點睛】本題考查求中位數,眾數,方差,理解相關概念是本題的解題關鍵.8、B【解析】

根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.9、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.10、A【解析】

設每支百合花x元,每支玫瑰花y元,根據總價=單價×購買數量結合小華一共花的錢比小紅少8元,即可得出關于x、y的二元一次方程,整理后即可得出結論.【詳解】設每支百合花x元,每支玫瑰花y元,根據題意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故選:A.【點睛】考查了二元一次方程的應用,找準等量關系,正確列出二元一次方程是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、a≥1.【解析】

根據平方根的定義列出不等式計算即可.【詳解】根據題意,得解得:故答案為【點睛】考查平方根的定義,正數有兩個平方根,它們互為相反數,0的平方根是0,負數沒有平方根.12、1【解析】

欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數的關系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.13、3a(x+y)(x-y)【解析】

解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.14、5+3或5+5.【解析】

分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據勾股定理和三角形的面積公式,即可得到該三角形的周長為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當一條直角邊是另一條直角邊的一半時,這個直角三角形是半高三角形,此時設較短的直角邊為a,則較長的直角邊為2a,由勾股定理可得:,解得:,∴此時較短的直角邊為,較長的直角邊為,∴此時直角三角形的周長為:;(2)當斜邊上的高是斜邊的一半是,這個直角三角形是半高三角形,此時設兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時這個直角三角形的周長為:.綜上所述,這個半高直角三角形的周長為:或.故答案為或.【點睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎;(2)根據題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時這兩種情況都要討論,不要忽略了其中一種.15、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F(xiàn)分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.16、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.17、=【解析】

設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結論.【詳解】解:設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【點睛】本題考查了由實際問題抽象出分式方程,根據題意找到等量關系是關鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2).【解析】

(1)連接OD,由平行線的判定定理可得OD∥AC,利用平行線的性質得∠ODE=∠DEA=90°,可得DE為⊙O的切線;

(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線;(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC與弦DC所圍成的圖形的面積=﹣=﹣.【點睛】本題考查的知識點是等腰三角形的性質、切線的判定與性質以及扇形面積的計算,解題的關鍵是熟練的掌握等腰三角形的性質、切線的判定與性質以及扇形面積的計算.19、(1)10米;(2)11.4米【解析】

(1)延長DC交AN于H.只要證明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解決問題.【詳解】(1)如圖,延長DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【點睛】本題考查解直角三角形的應用﹣坡度坡角問題,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.20、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應用-方向角問題.21、(1)證明見解析;(2).【解析】試題分析:(1)證明:如圖1,連接OB,由AB是⊙0的切線,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根據等腰三角形的性質得到∠1=∠2,通過等量代換得到結果.(2)如圖2,連接BD通過△DBC∽△CBE,得到比例式,列方程可得結果.(1)證明:如圖1,連接OB,∵AB是⊙0的切線,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如圖2,連接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD?CE,∴CD==,∴OC==,∴⊙O的半徑=.考點:切線的性質.22、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據OE的解析式表示點G的坐標,表示PG的長,根據面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論