奇偶函數(shù)教案5篇_第1頁(yè)
奇偶函數(shù)教案5篇_第2頁(yè)
奇偶函數(shù)教案5篇_第3頁(yè)
奇偶函數(shù)教案5篇_第4頁(yè)
奇偶函數(shù)教案5篇_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

奇偶函數(shù)教案5篇奇偶函數(shù)教案篇1

今天我說課的課題是高中數(shù)學(xué)人教a版必修一第一章第三節(jié)函數(shù)的基本性質(zhì)中的函數(shù)的奇偶性,下面我將從教材分析,教法、學(xué)法分析,教學(xué)過程,教輔手段,板書設(shè)計(jì)等方面對(duì)本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說明。

一、教材分析

(一)教材特點(diǎn)、教材的地位與作用

本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。

函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。

(二)重點(diǎn)、難點(diǎn)

1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。

2、本課時(shí)的`教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。

(三)教學(xué)目標(biāo)

1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;

2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡(jiǎn)單的問題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

二、教法、學(xué)法分析

1.教學(xué)方法:?jiǎn)l(fā)引導(dǎo)式

結(jié)合本章實(shí)際,教材簡(jiǎn)單易懂,重在應(yīng)用、解決實(shí)際問題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂趣,在解決問題的過程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu).使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過程,又增加了課堂的趣味性.

2.學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí).

三、教輔手段

以學(xué)生獨(dú)立思考、自主探究、合作交流,教師啟發(fā)引導(dǎo)為主,以多媒體演示為輔的教學(xué)方式進(jìn)行教學(xué)

四、教學(xué)過程

為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。

(一)設(shè)疑導(dǎo)入,觀圖激趣

讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花

學(xué)生舉例生活中的對(duì)稱現(xiàn)象

折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。

問題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)

以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的痕跡,然后將紙展開.觀察坐標(biāo)喜之中的圖形:

問題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)

(二)指導(dǎo)觀察,形成概念

這節(jié)課我們首先從兩類對(duì)稱:軸對(duì)稱和中心對(duì)稱展開研究.

思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱性如何

給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對(duì)稱呢此時(shí)提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律

借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等.接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示.

思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征

引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱.根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語言敘述定義,同時(shí)給出板書:

(1)函數(shù)f(x)的定義域?yàn)閍,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)

提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢(同時(shí)打出y=1/x的圖象讓學(xué)生觀察研究)

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:

(2)函數(shù)f(x)的定義域?yàn)閍,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x),則稱f(x)為奇函數(shù)

強(qiáng)調(diào)注意點(diǎn):"定義域關(guān)于原點(diǎn)對(duì)稱"的條件必不可少.

接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:

(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱

(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論

給出例題,加深理解:

例1,利用定義,判斷下列函數(shù)的奇偶性:

(1)f(x)=x2+1

(2)f(x)=x3-x

(3)f(x)=x4-3x2-1

(4)f(x)=1/x3+1

提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?

得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)

接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱,二是定義域雖關(guān)于原點(diǎn)對(duì)稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)

然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:

函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點(diǎn)對(duì)稱

函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對(duì)稱

給出例2:書p63例3,再進(jìn)行當(dāng)堂鞏固,

1,書p65ex2

2,說出下列函數(shù)的奇偶性:

y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3

歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)

(三)學(xué)生探索,發(fā)展思維

思考:1,函數(shù)y=2是什么函數(shù)

2,函數(shù)y=0有是什么函數(shù)

(四)布置作業(yè)

課本p39習(xí)題1.3(a組)第6題,b組第3

奇偶函數(shù)教案篇2

一、教學(xué)目標(biāo)

?知識(shí)與技能】

理解函數(shù)的奇偶性及其幾何意義.

?過程與方法】

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題.

?情感態(tài)度與價(jià)值觀】

體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

二、教學(xué)重難點(diǎn)

?重點(diǎn)】

函數(shù)的奇偶性及其幾何意義

?難點(diǎn)】

判斷函數(shù)的奇偶性的方法與格式.

三、教學(xué)過程

(一)導(dǎo)入新課

取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:

1以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;

問題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;

(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.

(二)新課教學(xué)

1.函數(shù)的奇偶性定義

像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù).

(1)偶函數(shù)(evenfunction)

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義

(2)奇函數(shù)(oddfunction)

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).

2.具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

3.典型例題

(1)判斷函數(shù)的奇偶性

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)

解:(略)

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;

2確定f(-x)與f(x)的關(guān)系;

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

(三)鞏固提高

1.教材p46習(xí)題1.3b組每1題

解:(略)

說明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).

2.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象

(教材p41思考題)

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).

(四)小結(jié)作業(yè)

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).

課本p46習(xí)題1.3(a組)第9、10題,b組第2題.

四、板書設(shè)計(jì)

函數(shù)的奇偶性

一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

奇偶函數(shù)教案篇3

一、三維目標(biāo):

知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。

情感態(tài)度與價(jià)值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操.通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

二、學(xué)習(xí)重、難點(diǎn):

重點(diǎn):函數(shù)的奇偶性的概念。

難點(diǎn):函數(shù)奇偶性的判斷。

三、學(xué)法指導(dǎo):

學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

四、知識(shí)鏈接:

1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:

2.分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對(duì)稱性。

五、學(xué)習(xí)過程:

函數(shù)的奇偶性:

(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱:

如果______________________________________,那么函數(shù)為奇函數(shù);

如果______________________________________,那么函數(shù)為偶函數(shù)。

(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。

(3)奇函數(shù)在對(duì)稱區(qū)間的增減性;偶函數(shù)在對(duì)稱區(qū)間的增減性。

六、達(dá)標(biāo)訓(xùn)練:

a1、判斷下列函數(shù)的奇偶性。

(1)f(x)=x4;(2)f(x)=x5;

(3)f(x)=x+(4)f(x)=

a2、二次函數(shù)()是偶函數(shù),則b=___________.

b3、已知,其中為常數(shù),若,則

_______.

b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()

(a)軸對(duì)稱(b)軸對(duì)稱(c)原點(diǎn)對(duì)稱(d)以上均不對(duì)

b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____.

c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)

時(shí),=_______.

d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()

(a)0.5(b)(c)1.5(d)

d8、定義在上的奇函數(shù),則常數(shù)____,_____.

七、學(xué)習(xí)小結(jié):

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

補(bǔ)充練習(xí)題:

1.下列各圖中,不能是函數(shù)f(x)圖象的是()

解析:選c.結(jié)合函數(shù)的定義知,對(duì)a、b、d,定義域中每一個(gè)x都有唯一函數(shù)值與之對(duì)應(yīng);而對(duì)c,對(duì)大于0的x而言,有兩個(gè)不同值與之對(duì)應(yīng),不符合函數(shù)定義,故選c.

2.若f(1x)=11+x,則f(x)等于()

a.11+x(x≠-1)b.1+xx(x≠0)

c.x1+x(x≠0且x≠-1)d.1+x(x≠-1)

解析:選c.f(1x)=11+x=1x1+1x(x≠0),

∴f(t)=t1+t(t≠0且t≠-1),

∴f(x)=x1+x(x≠0且x≠-1).

3.已知f(x)是一次函數(shù),2f(2)-3f(1)=5,2f(0)-f(-1)=1,則f(x)=()

a.3x+2b.3x-2

c.2x+3d.2x-3

解析:選b.設(shè)f(x)=kx+b(k≠0),

∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.

奇偶函數(shù)教案篇4

學(xué)習(xí)目標(biāo)1.函數(shù)奇偶性的概念

2.由函數(shù)圖象研究函數(shù)的奇偶性

3.函數(shù)奇偶性的判斷

重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性

難點(diǎn):理解函數(shù)的奇偶性

知識(shí)梳理:

1.軸對(duì)稱圖形:

2中心對(duì)稱圖形:

?概念探究】

1、畫出函數(shù),與的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

2、求出,時(shí)的函數(shù)值,寫出,。

結(jié)論:。

3、奇函數(shù):___________________________________________________

4、偶函數(shù):______________________________________________________

?概念深化】

(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于軸對(duì)稱,則這個(gè)函數(shù)是___________。

6.根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.

題型一:判定函數(shù)的奇偶性。

例1、判斷下列函數(shù)的奇偶性:

(1)(2)(3)

(4)(5)

練習(xí):教材第49頁(yè),練習(xí)a第1題

總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

題型二:利用奇偶性求函數(shù)解析式

例2:若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng)時(shí)f(x)的解析式。

練習(xí):若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

已知定義在實(shí)數(shù)集上的奇函數(shù)滿足:當(dāng)x0時(shí),,求的表達(dá)式

題型三:利用奇偶性作函數(shù)圖像

例3研究函數(shù)的性質(zhì)并作出它的圖像

練習(xí):教材第49練習(xí)a第3,4,5題,練習(xí)b第1,2題

當(dāng)堂檢測(cè)

1已知是定義在r上的奇函數(shù),則(d)

a.b.c.d.

2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)

a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7

c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7

3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)

a.b.c.d.

4已知函數(shù)為奇函數(shù),若,則-1

5若是偶函數(shù),則的單調(diào)增區(qū)間是

6下列函數(shù)中不是偶函數(shù)的是(d)

abcd

7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)

abf(-)f(-2)f(3)cf(-)

8奇函數(shù)的圖像

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論